Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \((P)\,\)có phương trình \(y = {x^2}\) và đường thẳng \(\left( d \right)\) có phương trình \[y = 2mx - {m^2} - m - 2\] (với \(m\) là tham số).
1. Tìm tọa độ điểm \(M\) thuộc \(\left( P \right)\) biết điểm \(M\) có hoành độ bằng \( - 3.\)
2. Tìm điều kiện của \(m\) để đường thẳng \(\left( d \right)\) cắt parabol \(\left( P \right)\) tại hai điểm phân biệt. Gọi \(A\left( {{x_1};{y_1}} \right),\,\,B\left( {{x_2};{y_2}} \right)\) là hai giao điểm của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right),\) xác định \(m\) để \[{x_1}{y_2} + {x_2}{y_1} = 2{m^3} + 6.\]
Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \((P)\,\)có phương trình \(y = {x^2}\) và đường thẳng \(\left( d \right)\) có phương trình \[y = 2mx - {m^2} - m - 2\] (với \(m\) là tham số).
1. Tìm tọa độ điểm \(M\) thuộc \(\left( P \right)\) biết điểm \(M\) có hoành độ bằng \( - 3.\)
2. Tìm điều kiện của \(m\) để đường thẳng \(\left( d \right)\) cắt parabol \(\left( P \right)\) tại hai điểm phân biệt. Gọi \(A\left( {{x_1};{y_1}} \right),\,\,B\left( {{x_2};{y_2}} \right)\) là hai giao điểm của đường thẳng \(\left( d \right)\) và parabol \(\left( P \right),\) xác định \(m\) để \[{x_1}{y_2} + {x_2}{y_1} = 2{m^3} + 6.\]
Quảng cáo
Trả lời:
2)Ta có phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là
\({x^2} = 2mx - {m^2} - m - 2 \Leftrightarrow {x^2} - 2mx + {m^2} + m + 2 = 0\,\,\left( 1 \right)\)
\(\Delta ' = {\left( { - m} \right)^2} - \left( {{m^2} + m + 2} \right) = - m - 2\)\( = 2{m^3} + 2{m^2} + 4m\)\[2{m^3} + 2{m^2} + 4m = 2{m^3} + 6 \Leftrightarrow 2{m^2} + 4m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 3\end{array} \right.\]
Đối chiếu \(\left( * \right)\) vậy \(m = - 3\).Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
1. Rút gọn biểu thức \(P\). |
|
|
\(P = \frac{{\sqrt x + 1 + \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}:\frac{1}{{\sqrt x - 1}}\) |
|
|
\(P = \frac{{2\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\left( {\sqrt x - 1} \right)\) |
|
|
\(P = \frac{{2\sqrt x + 1}}{{\sqrt x + 1}}.\) |
|
|
2. Tìm tất cả các giá trị nguyên của \(x\) để biểu thức \(P\) nhận giá trị nguyên. |
|
|
\(P = 2 - \frac{1}{{\sqrt x + 1}}.\) Biểu thức \(P\) nhận giá trị nguyên \(\frac{1}{{\sqrt x + 1}}\) là số nguyên \( \Leftrightarrow \sqrt x + 1\) là ước nguyên của \(1\)
|
|
|
\( \Leftrightarrow \left[ \begin{array}{l}\sqrt x + 1 = 1\\\sqrt x + 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 0\,\,\\\sqrt x = - 2\,\,\left( {VN} \right)\end{array} \right. \Rightarrow x = 0.\) Vậy \(x = 0\)thỏa mãn. |
|
Lời giải
1) Do \(\Delta ' = {\left( { - 2} \right)^2} - 1.2\sqrt 3 = 4 - 2\sqrt 3 = {\left( {\sqrt 3 - 1} \right)^2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.