Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Chuyên Hà Nam có đáp án
8 người thi tuần này 4.6 8 lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
Danh sách câu hỏi:
Lời giải
|
1. Rút gọn biểu thức \(P\). |
|
|
\(P = \frac{{\sqrt x + 1 + \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}:\frac{1}{{\sqrt x - 1}}\) |
|
|
\(P = \frac{{2\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\left( {\sqrt x - 1} \right)\) |
|
|
\(P = \frac{{2\sqrt x + 1}}{{\sqrt x + 1}}.\) |
|
|
2. Tìm tất cả các giá trị nguyên của \(x\) để biểu thức \(P\) nhận giá trị nguyên. |
|
|
\(P = 2 - \frac{1}{{\sqrt x + 1}}.\) Biểu thức \(P\) nhận giá trị nguyên \(\frac{1}{{\sqrt x + 1}}\) là số nguyên \( \Leftrightarrow \sqrt x + 1\) là ước nguyên của \(1\)
|
|
|
\( \Leftrightarrow \left[ \begin{array}{l}\sqrt x + 1 = 1\\\sqrt x + 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 0\,\,\\\sqrt x = - 2\,\,\left( {VN} \right)\end{array} \right. \Rightarrow x = 0.\) Vậy \(x = 0\)thỏa mãn. |
|
Lời giải
1) Do \(\Delta ' = {\left( { - 2} \right)^2} - 1.2\sqrt 3 = 4 - 2\sqrt 3 = {\left( {\sqrt 3 - 1} \right)^2}\)
Lời giải
2)Ta có phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là
\({x^2} = 2mx - {m^2} - m - 2 \Leftrightarrow {x^2} - 2mx + {m^2} + m + 2 = 0\,\,\left( 1 \right)\)
\(\Delta ' = {\left( { - m} \right)^2} - \left( {{m^2} + m + 2} \right) = - m - 2\)\( = 2{m^3} + 2{m^2} + 4m\)\[2{m^3} + 2{m^2} + 4m = 2{m^3} + 6 \Leftrightarrow 2{m^2} + 4m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 3\end{array} \right.\]
Đối chiếu \(\left( * \right)\) vậy \(m = - 3\).Lời giải
Gọi số tiền điện trong tháng 4 của nhà bác An là \(x\) (nghìn đồng), đkiện \(0 < x < 500\)
Gọi số tiền điện trong tháng 4 của nhà bác Bình là \(y\) (nghìn đồng), đkiện \(0 < y < 500\)Vì trong tháng 4 cả hai gia đình dùng hết 500 nghìn tiền điện nên ta có phương trình
\(x + y = 500\) (1)Vì sang tháng 5 nhà bác An giảm \(15\% \) và nhà bác Bình giảm \(10\% \) và cả hai nhà giảm được 65 nghìn đồng nên ta có phương trình
\(15\% x + 10\% y = 65 \Leftrightarrow 0,15x + 0,1y = 65\) (2)Từ (1) và (2) ta có hệ phương trình:\(\left\{ \begin{array}{l}x + y = 500\\0,15x + 0,1y = 65\end{array} \right.\)
Giải hệ ta được \(\left\{ \begin{array}{l}x = 300\\y = 200\end{array} \right.\). Vậy trong tháng 4 nhà bác An dùng hết 300 nghìn đồng tiền điện, nhà bác Bình dùng hết 200 nghìn đồng tiền điện.Lời giải
![]() \(\widehat {SAO} = 90^\circ \) vì \(SA\) là tiếp tuyến của đường tròn |
|
|
\(\widehat {SBO} = 90^\circ \) vì \(SB\) là tiếp tuyến của đường tròn |
|
|
\( \Rightarrow \widehat {SAO} + \widehat {SBO} = 180^\circ \) |
|
|
Vậy tứ giác \(SAOB\) nội tiếp. |
|
|
2. Chứng minh \(S{B^2} = SM.\,\,SN\). |
|
|
Xét hai \[\Delta SBM\] và\[\Delta SNB:\]Có \(\widehat S\) chung. |
|
|
Có \(\widehat {MBS} = \widehat {MNB}\) (cùng chắn )\[ \Rightarrow \Delta SBM\] đồng dạng \[\Delta SNB\] |
|
|
\( \Rightarrow \frac{{SB}}{{SN}} = \frac{{SM}}{{SB}} \Leftrightarrow S{B^2} = SM.\,\,SN\) |
|
|
3. Cho \(SO = R\sqrt 5 \)và \(MN = R\sqrt 2 \). Gọi \(E\) là trung điểm \(MN\). Tính độ dài đoạn thẳng \(OE\) và diện tích tam giác \(SOM\) theo \(R\). |
|
![]() Ta có \(OE \bot MN\) \(MN = R\sqrt 2 \Rightarrow ME = \frac{{R\sqrt 2 }}{2},\) \(OM = R\) \( \Rightarrow OE = \sqrt {O{M^2} - M{E^2}} = \frac{{R\sqrt 2 }}{2}\) |
|
|
\(SO = R\sqrt 5 ,\)\(SE = \sqrt {S{O^2} - O{E^2}} = \sqrt {5{R^2} - \frac{{2{R^2}}}{4}} = \frac{{3R\sqrt 2 }}{2}\) |
|
|
\(SM = SE - ME = R\sqrt 2 .\) |
|
|
Vậy \({S_{SOM}} = \frac{1}{2}OE.SM = \frac{1}{2}.\frac{{R\sqrt 2 }}{2}.R\sqrt 2 = \frac{{{R^2}}}{2}\) |
|
|
4. Tiếp tuyến tại \(M\) của đường tròn \(\left( {O;R} \right)\) cắt \(SA,\,SB\) lần lượt tại \(P,\,Q\). Gọi giao điểm của \(OQ,\,OP\) với \(AB\) lần lượt là \(I\) và \(H\). Chứng minh ba đường thẳng \(OM,\,\,QH,\,\,PI\) đồng quy. |
|
![]() Vì \(QM,\,\,QB\) là hai tiếp tuyến của nên là hai tiếp tuyến của nên
|
|
|
|
|
|
Ta có \(OM \bot PQ\,\,\,\left( 3 \right)\) Từ (1), (2) và (3) suy ra ba đường thẳng \(OM,\,\,QH,\,\,PI\) là ba đường cao của tam giác \(OPQ\) nên chúng đồng quy. |
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


