(2,0 điểm) Cho hai biểu thức: và với
a) Tìm điều kiện xác định của hai biểu thức \(A\) và \(B\).
(2,0 điểm) Cho hai biểu thức: và với
a) Tìm điều kiện xác định của hai biểu thức \(A\) và \(B\).
Quảng cáo
Trả lời:
a) ⦁ Xét biểu thức \(A = \frac{{x + 3}}{{\sqrt x - 2}}\).
Điều kiện xác định của biểu thức \(A\) và \(x \ge 0\) và \(\sqrt x - 2 \ne 0\) hay \(x \ge 0,\,\,x \ne 4.\)
⦁ Xét biểu thức \(B = \frac{{\sqrt x - 1}}{{\sqrt x + 2}} + \frac{{5\sqrt x - 2}}{{x - 4}}\).
Điều kiện xác định của biểu thức \(B\) là \(x \ge 0,\,\,\sqrt x + 2 \ne 0\) và \(x - 4 \ne 0.\)
Với \(x \ge 0\) ta thấy \(\sqrt x + 2 > 0\) và \(x - 4 \ne 0\) khi \(x \ne 4.\)
Vậy, điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều là \(x \ge 0,\,\,x \ne 4.\)
Câu hỏi cùng đoạn
Câu 2:
b) Tính giá trị của biểu thức \(A\) khi \(x = 16.\)
b) Tính giá trị của biểu thức \(A\) khi \(x = 16.\)
b) Với \(x = 16\) (thỏa mãn điều kiện), ta có
\(A = \frac{{16 + 3}}{{\sqrt {16} - 2}} = \frac{{19}}{{4 - 2}} = \frac{{19}}{2}\).
Vậy khi \(x = 16\) thì giá trị của biểu thức \(A\) bằng \(\frac{{19}}{2}\).
Câu 3:
c) Chứng minh \(B = \frac{{\sqrt x }}{{\sqrt x - 2}}.\)
c) Chứng minh \(B = \frac{{\sqrt x }}{{\sqrt x - 2}}.\)
c) Với \(x > 0,\,\,x \ne 4\), ta có
\( = \frac{{x - 3\sqrt x + 2 + 5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x - 2}}\).
Câu 4:
d) Xét biểu thức \(P = \frac{A}{B}.\) Tìm tất cả các giá trị nguyên của \(x\) thỏa mãn \(P \le 4\).
d) Xét biểu thức \(P = \frac{A}{B}.\) Tìm tất cả các giá trị nguyên của \(x\) thỏa mãn \(P \le 4\).
Hướng dẫn giải
d) Ta có \(P = \frac{A}{B} = \frac{{x + 3}}{{\sqrt x - 2}}:\frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{x + 3}}{{\sqrt x }}\).
Do đó \(P \le 4\) khi \(\frac{{x + 3}}{{\sqrt x }} \le 4\) suy ra \(\frac{{x + 3}}{{\sqrt x }} - 4 \le 0\) hay \(\frac{{x + 3 - 4\sqrt x }}{{\sqrt x }} \le 0\).
Do \(\sqrt x > 0\) nên để \(\frac{{x + 3 - 4\sqrt x }}{{\sqrt x }} \le 0\) thì \(x + 3 - 4\sqrt x \le 0\).
Ta có \(x + 3 - 4\sqrt x = x - 4\sqrt x + 4 - 1 = {\left( {\sqrt x - 2} \right)^2} - 1\).
Do đó \(x + 3 - 4\sqrt x \le 0\) khi \({\left( {\sqrt x - 2} \right)^2} - 1 \le 0\) suy ra \[ - 1 \le \;\sqrt x - 2 \le 1\] hay \[1 \le \;\sqrt x \le 3\] từ dó suy ra \[1 \le \;x \le 9\].
Vì \[x\] nguyên nên ta có \[x \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9} \right\}.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định: \(x \ne 1,\,\,x \ne 0.\)
Ta có: \(\frac{4}{{x - 1}} - \frac{3}{x} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(\frac{{4x}}{{x\left( {x - 1} \right)}} - \frac{{3\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(\frac{{4x - 3\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(4x - 3x + 3 = 4x\)
\(4x - 3x - 4x = - 3\)
\( - 3x = - 3\)
\(x = 1\) (không thỏa mãn điều kiện).
Vậy phương trình đã cho vô nghiệm.Lời giải
Hướng dẫn giải
Với a là chiều dài của hai ngăn bể cá. Ta có \(V = abc = 750\) (1)
Diện tích các miếng hình là : \(S = ab + 2ac + 2bc\).
Ta có \(\frac{S}{{abc}} = \frac{1}{c} + \frac{2}{b} + \frac{3}{a}\).
Áp dụng bất đẳng thức Cauchy cho 3 số \(\frac{1}{c};\,\,\frac{2}{b};\,\,\frac{3}{a}\) ta được
\(\frac{S}{{abc}} = \frac{1}{c} + \frac{2}{b} + \frac{3}{a} \ge 3\sqrt[3]{{\frac{1}{c} \cdot \frac{2}{b} \cdot \frac{3}{a}}} = \frac{{3\sqrt[3]{6}}}{{\sqrt {abc} }} = \frac{{3\sqrt[3]{6}}}{{\sqrt {750} }}.\)
Dấu xảy ra khi \(\left\{ \begin{array}{l}\frac{1}{c} = \frac{2}{b} = \frac{3}{a}\\abc = 750\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}2a = 3b\\a = 3c\\b = 2c\\abc = 750\end{array} \right.\).
Khi đó, ta có \(3c \cdot 2c \cdot c = 750\) hay \(6{c^3} = 750\) nên \({c^3} = 125\) suy ra \(c = 5\).
Do đó \(a = 3c = 15\,;\,\,b = 2c = 10\,;\,\,c = 5.\)
Vậy các kích thước\(a = 15\,;\,\,b = 10\,;\,\,c = 5\) để lượng inox cần sử dụng là ít nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
