Bộ 5 đề thi cuối kì 1 Toán 9 Kết nối tri thức (Tự luận) có đáp án - Đề 2
11 người thi tuần này 4.6 49 lượt thi 15 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 13. Mở đầu về đường tròn có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
(2,0 điểm) Cho hai biểu thức: và với
Lời giải
a) ⦁ Xét biểu thức \(A = \frac{{x + 3}}{{\sqrt x - 2}}\).
Điều kiện xác định của biểu thức \(A\) và \(x \ge 0\) và \(\sqrt x - 2 \ne 0\) hay \(x \ge 0,\,\,x \ne 4.\)
⦁ Xét biểu thức \(B = \frac{{\sqrt x - 1}}{{\sqrt x + 2}} + \frac{{5\sqrt x - 2}}{{x - 4}}\).
Điều kiện xác định của biểu thức \(B\) là \(x \ge 0,\,\,\sqrt x + 2 \ne 0\) và \(x - 4 \ne 0.\)
Với \(x \ge 0\) ta thấy \(\sqrt x + 2 > 0\) và \(x - 4 \ne 0\) khi \(x \ne 4.\)
Vậy, điều kiện xác định của biểu thức \(A\) và biểu thức \(B\) đều là \(x \ge 0,\,\,x \ne 4.\)
Lời giải
b) Với \(x = 16\) (thỏa mãn điều kiện), ta có
\(A = \frac{{16 + 3}}{{\sqrt {16} - 2}} = \frac{{19}}{{4 - 2}} = \frac{{19}}{2}\).
Vậy khi \(x = 16\) thì giá trị của biểu thức \(A\) bằng \(\frac{{19}}{2}\).
Lời giải
c) Với \(x > 0,\,\,x \ne 4\), ta có
\( = \frac{{x - 3\sqrt x + 2 + 5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x - 2}}\).
Lời giải
Hướng dẫn giải
d) Ta có \(P = \frac{A}{B} = \frac{{x + 3}}{{\sqrt x - 2}}:\frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{x + 3}}{{\sqrt x }}\).
Do đó \(P \le 4\) khi \(\frac{{x + 3}}{{\sqrt x }} \le 4\) suy ra \(\frac{{x + 3}}{{\sqrt x }} - 4 \le 0\) hay \(\frac{{x + 3 - 4\sqrt x }}{{\sqrt x }} \le 0\).
Do \(\sqrt x > 0\) nên để \(\frac{{x + 3 - 4\sqrt x }}{{\sqrt x }} \le 0\) thì \(x + 3 - 4\sqrt x \le 0\).
Ta có \(x + 3 - 4\sqrt x = x - 4\sqrt x + 4 - 1 = {\left( {\sqrt x - 2} \right)^2} - 1\).
Do đó \(x + 3 - 4\sqrt x \le 0\) khi \({\left( {\sqrt x - 2} \right)^2} - 1 \le 0\) suy ra \[ - 1 \le \;\sqrt x - 2 \le 1\] hay \[1 \le \;\sqrt x \le 3\] từ dó suy ra \[1 \le \;x \le 9\].
Vì \[x\] nguyên nên ta có \[x \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9} \right\}.\]
Đoạn văn 2
(3,5 điểm)
Lời giải
a) Điều kiện xác định: \(x \ne 1,\,\,x \ne 0.\)
Ta có: \(\frac{4}{{x - 1}} - \frac{3}{x} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(\frac{{4x}}{{x\left( {x - 1} \right)}} - \frac{{3\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(\frac{{4x - 3\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = \frac{{4x}}{{x\left( {x - 1} \right)}}\)
\(4x - 3x + 3 = 4x\)
\(4x - 3x - 4x = - 3\)
\( - 3x = - 3\)
\(x = 1\) (không thỏa mãn điều kiện).
Vậy phương trình đã cho vô nghiệm.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
(1,5 điểm) Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị trí quan sát \(A\) cao \(7{\rm{ m}}\) so với mặt đất, có thể nhìn thấy đỉnh \(B\) và đỉnh \(C\) của một cột ăng – ten dưới góc \(50^\circ \) và \(40^\circ \) so với phương nằm ngang.

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
(2,5 điểm) Cho đường tròn \(\left( {O;R} \right)\) và điểm \(M\) nằm ngoài đường tròn \(\left( O \right)\) sao cho \(OM = \frac{8}{5}R.\) Từ \(M\) vẽ hai tiếp tuyến \(MA\) và \(MB\) của đường tròn \(\left( O \right)\) (với \(A,B\) là hai tiếp điểm), đường thẳng \(AB\) cắt \(OM\) tại \(K\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
