Câu hỏi:

24/12/2025 117 Lưu

Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a. \[SA = \frac{{a\sqrt 3 }}{2}\] và SA vuông góc với đáy. Gọi I và J lần lượt là trung điểm BC và SI. Tìm mệnh đề sai.

A. BI \[ \bot \] (SAI).      
B. BC \[ \bot \] (SIA).     
C. AJ \[ \bot \] (SBC).   
D. AI \[ \bot \] (SBC).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a.SA =a căn bậc hai 3/2 và SA vuông góc với đáy. Gọi I và J lần lượt là trung điểm BC và SI. Tìm mệnh đề sai. (ảnh 1)

+) Vì \(\Delta ABC\) đều, \(I\) là trung điểm của \(BC\) nên \(AI \bot BC\) (1).

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) (2).

Từ (1) và (2), suy ra \(BC \bot \left( {SAI} \right)\). Do đó A, B đúng.

+) Vì \(BC \bot \left( {SAI} \right) \Rightarrow BC \bot AJ\) (3).

Vì \(AI\) là đường cao tam giác \(ABC\) đều cạnh a nên \(AI = \frac{{a\sqrt 3 }}{2} = SA\).

Do đó \(\Delta SAI\) cân tại A mà \(J\) là trung điểm \(SI\) nên \(AJ \bot SI\) (4).

Từ (3) và (4), suy ra \(AJ \bot \left( {SBC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = 2.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA vuông góc (ABC), đáy ABC là tam giác đều cạnh a và SA = 3a/2.  Tính số đo góc phẳng nhị diện [S,BC,A]. (ảnh 1)

Gọi \(I\) là trung điểm \(BC \Rightarrow AI \bot BC\) (vì \(ABC\) là tam giác đều).

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SIA}\).

Mà \(\Delta ABC\) đều cạnh \(a \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta SAI\) vuông tại \(A\), ta có: \({\rm{tan}}\widehat {SIA} = \frac{{SA}}{{AI}} = \sqrt 3  \Rightarrow \widehat {SIA} = 60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\log _a}\frac{x}{y} = \frac{{{{\log }_a}x}}{{{{\log }_a}y}}\].       
B. \[{\log _a}\frac{1}{x} = \frac{1}{{{{\log }_a}x}}\].
C. \[{\log _a}\left( {x + y} \right) = {\log _a}x + {\log _a}y\].     
D. \[{\log _b}x = {\log _b}a.{\log _a}x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. ACB’D’ . 
B. (ACC’A’) (BDD’B’). 
C. (AA’B’B) (ABCD) . 
D. (AA’B’B) (BCC’B’).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BA \bot \left( {SAD} \right).\) 
B. \(BA \bot \left( {SAC} \right).\) 
C. \(BA \bot \left( {SBC} \right).\) 
D. \(BA \bot \left( {SCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP