Câu hỏi:

24/12/2025 39 Lưu

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 1,BC = 2\), \(AA' = 2\) (tham khảo hình bên). Khoảng cách giữa hai đường thẳng \(AD'\) và \(DC'\) bằng

A. \(\frac{{\sqrt 6 }}{3}\).  
B. \(\frac{{\sqrt 6 }}{2}\). 
C. \(\sqrt 2 \). 
 D. \(\frac{{2\sqrt 5 }}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1,BC = 2, AA' = 2 (tham khảo hình bên). Khoảng cách giữa hai đường thẳng AD' và DC' bằng (ảnh 1)

Ta có \(AB//D'C'\) và \(AB = D'C'\) (cùng song song và bằng \(CD\)).

Do đó \(ABC'D'\) là hình bình hành. Suy ra \(AD'//BC'\)\( \Rightarrow AD'//\left( {BC'D} \right)\).

Do đó \(d\left( {AD',DC'} \right) = d(AD',\left( {BC'D} \right)) = d\left( {A,\left( {BC'D} \right)} \right) = d\left( {C,\left( {BC'D} \right)} \right) = h\).

Xét tứ diện \(C.BC'D\) có \(CD,CB,CC'\) đôi một vuông góc.

Ta có:\(\frac{1}{{{h^2}}} = \frac{1}{{C{D^2}}} + \frac{1}{{C{B^2}}} + \frac{1}{{C{{C'}^2}}} = 1 + \frac{1}{4} + \frac{1}{4} = \frac{3}{2}\)\( \Rightarrow h = \frac{{\sqrt 6 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = 2.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA vuông góc (ABC), đáy ABC là tam giác đều cạnh a và SA = 3a/2.  Tính số đo góc phẳng nhị diện [S,BC,A]. (ảnh 1)

Gọi \(I\) là trung điểm \(BC \Rightarrow AI \bot BC\) (vì \(ABC\) là tam giác đều).

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SIA}\).

Mà \(\Delta ABC\) đều cạnh \(a \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta SAI\) vuông tại \(A\), ta có: \({\rm{tan}}\widehat {SIA} = \frac{{SA}}{{AI}} = \sqrt 3  \Rightarrow \widehat {SIA} = 60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\log _a}\frac{x}{y} = \frac{{{{\log }_a}x}}{{{{\log }_a}y}}\].       
B. \[{\log _a}\frac{1}{x} = \frac{1}{{{{\log }_a}x}}\].
C. \[{\log _a}\left( {x + y} \right) = {\log _a}x + {\log _a}y\].     
D. \[{\log _b}x = {\log _b}a.{\log _a}x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. ACB’D’ . 
B. (ACC’A’) (BDD’B’). 
C. (AA’B’B) (ABCD) . 
D. (AA’B’B) (BCC’B’).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(BA \bot \left( {SAD} \right).\) 
B. \(BA \bot \left( {SAC} \right).\) 
C. \(BA \bot \left( {SBC} \right).\) 
D. \(BA \bot \left( {SCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP