Rút gọn biểu thức \[R = {\log _a}{b^{\frac{3}{2}}} + {\log _{{a^2}}}{b^{\frac{5}{2}}}\] (với \[a > 0;\,\,a \ne 1\] và \[b > 0).\]
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
\[R = {\log _a}{b^{\frac{3}{2}}} + {\log _{{a^2}}}{b^{\frac{5}{2}}}\]\[ = \frac{3}{2}{\log _a}b + \frac{5}{2}.\frac{1}{2}{\log _a}b\]\[ = \frac{3}{2}{\log _a}b + \frac{5}{4}{\log _a}b = \frac{{11}}{4}{\log _a}b.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Có 6 ngày có nhiệt độ từ \(28^\circ C\) đến dưới \(31^\circ C\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
\(P = \sqrt[3]{{x\sqrt[5]{{{x^2}\sqrt x }}}} = \sqrt[3]{{x\sqrt[5]{{{x^2}.{x^{\frac{1}{2}}}}}}} = \sqrt[3]{{x\sqrt[5]{{{x^{\frac{5}{2}}}}}}} = \sqrt[3]{{x.{x^{\frac{5}{2}.\frac{1}{5}}}}} = \sqrt[3]{{{x^{\frac{3}{2}}}}} = {x^{\frac{1}{2}}}\)
\( \Rightarrow \alpha = \frac{1}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




