Câu hỏi:

24/12/2025 35 Lưu

Hàm số \[y = \frac{{{x^2} + x}}{{x - 1}}\]có đạo hàm \(y' = \frac{{a{x^2} + bx + c}}{{{{(x - 1)}^2}}}\). Khi đó \[S = a + b + c\] có kết quả là

A. \(S = 1\). 
B. \(S =  - 2\).
C. \(S = 0\).  
D. \(S =  - 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

\[y' = \frac{{\left( {2x + 1} \right)\left( {x - 1} \right) - \left( {{x^2} + x} \right)}}{{{{\left( {x - 1} \right)}^2}}}\]\[ = \frac{{{x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}}\].

Suy ra \(a = 1;b =  - 2;c =  - 1\).

Do đó \(S = a + b + c = 1 - 2 - 1 =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Có 6 ngày có nhiệt độ từ \(28^\circ C\) đến dưới \(31^\circ C\).

Câu 2

A. \(\frac{1}{2}\). 
B. \(\frac{5}{2}\). .
C. \(\frac{9}{2}\).          
D. \(\frac{3}{2}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

\(P = \sqrt[3]{{x\sqrt[5]{{{x^2}\sqrt x }}}} = \sqrt[3]{{x\sqrt[5]{{{x^2}.{x^{\frac{1}{2}}}}}}} = \sqrt[3]{{x\sqrt[5]{{{x^{\frac{5}{2}}}}}}} = \sqrt[3]{{x.{x^{\frac{5}{2}.\frac{1}{5}}}}} = \sqrt[3]{{{x^{\frac{3}{2}}}}} = {x^{\frac{1}{2}}}\)

\( \Rightarrow \alpha  = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y =  - {e^x}\). 
B. \(y = \left| {\ln x} \right|\). 
C. \(y = \ln x.\) 
D. \(y = {e^x}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AA' \bot \left( {ABB'A'} \right)\). 
B. \(CA' \bot \left( {ABC'D'} \right)\). 
C. \(AA' \bot \left( {ABCD} \right)\).
D. \(CA' \bot \left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP