Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 3 \), \(SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Hạ \(AD \bot BC\) tại \(D\) mà \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\). Suy ra \(BC \bot \left( {SAD} \right)\).
Hạ \(AE \bot SD\) tại \(E\)(1).
Vì \(BC \bot \left( {SAD} \right)\)\( \Rightarrow BC \bot AE\) (2).
Từ (1) và (2), suy ra \(AE \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AE\).
Xét \(\Delta ABC\) vuông tại \(A\) có \(\frac{1}{{A{D^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\).
Xét \(\Delta SAD\) vuông tại A có \(\frac{1}{{A{E^2}}} = \frac{1}{{A{D^2}}} + \frac{1}{{S{A^2}}}\)\( = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} + \frac{1}{{S{A^2}}}\).
Do đó \(\frac{1}{{A{E^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{3{a^2}}} + \frac{1}{{4{a^2}}} = \frac{{19}}{{12{a^2}}} \Rightarrow AE = \frac{{2a\sqrt {57} }}{{19}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Số trung bình \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Vì \(SA \bot \left( {ABCD} \right) \Rightarrow \) hình chiếu của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(AC\).
Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là \(\widehat {SCA}\).
Vì \(ABCD\) là hình chữ nhật nên \(AC = BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).
Xét \(\Delta SAC\) vuông tại \(A\), có \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {SCA} = 60^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

