Câu hỏi:

24/12/2025 116 Lưu

I. Trắc nghiệm (7 điểm)

Cho hai số thực dương \(x,\,\,y\) và hai số thực \(\alpha ,\,\,\beta \) tùy ý. Khẳng định nào sau đây là sai?

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                 

B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Với hai số thực dương \(x,\,\,y\) và hai số thực \(\alpha ,\,\,\beta \) tùy ý, ta có:

+) \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\) (nhân hai lũy thừa cùng cơ số);

+) \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\) (lũy thừa của lũy thừa);

+) \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\) (lũy thừa của một tích).

Khi đó, áp dụng công thức lũy thừa của một tích ta có

\({\left( {xy} \right)^{\alpha + \beta }} = {x^{\alpha + \beta }} \cdot {y^{\alpha + \beta }} \ne {x^\alpha } \cdot {y^\beta }\) (dấu bằng chỉ xảy ra khi \(\alpha = \beta = 0\)).

Từ đó suy ra đáp án B sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{a^2}b\].          
B. \[a{b^2}\].          
C. \[{a^2}{b^2}\].                
D. \[ab\].

Lời giải

Đáp án đúng là: D

Ta có \(\frac{{{{\left( {\sqrt[4]{{{a^3} \cdot {b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}} \cdot {b^6}} }}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{{\left( {{a^{12}} \cdot {b^6}} \right)}^{\frac{1}{2}}}}}}} = \frac{{{a^3} \cdot {b^2}}}{{\sqrt[3]{{{a^6} \cdot {b^3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{{\left( {{a^6} \cdot {b^3}} \right)}^{\frac{1}{3}}}}} = \frac{{{a^3} \cdot {b^2}}}{{{a^2} \cdot b}} = ab\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD (ảnh 1)

a) Ta có \(\left\{ \begin{array}{l}CD \bot SA\,\,\,\,\,\,\left( {{\rm{v\`i }}SA \bot \left( {ABCD} \right)} \right)\\CD \bot AD\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

b) Gọi \(O = AC \cap BD.\)

Ta có \(\left\{ \begin{array}{l}CO \bot BD\\SO \bot BD\,\,\,\,\left( {{\rm{v\`i }}\,\,\,SB = SD\,} \right)\end{array} \right. \Rightarrow \left[ {S,\,\,BD,\,\,C} \right] = \widehat {SOC}\).

\(\Delta SOA\) vuông tại \(A:\) \(AO = \frac{{a\sqrt 2 }}{2} = SA \Rightarrow \)\(\widehat {SOA} = 45^\circ \Rightarrow \widehat {SOC} = 135^\circ \).

Vậy số đo của góc nhị diện \(\left[ {S,\,\,BD,\,\,C} \right]\) bằng \(135^\circ .\)

Câu 3

A. \(0 < b < 1 < a\).                          
B. \(0 < a < b < 1\).                     
C. \(0 < b < a < 1\).
D. \(0 < a < 1 < b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}\].   
B. \[4\].                    
C. \[ - 4\].   
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(V = \frac{{2{a^3}\sqrt 3 }}{7}\).    
B. \(V = \frac{{{a^3}\sqrt 3 }}{{13}}\).                       
C. \(V = \frac{{{a^3}\sqrt 3 }}{4}\).                             
D. \(V = \frac{{4{a^3}\sqrt 6 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP