I. Trắc nghiệm (7 điểm)
Cho hai số thực dương \(x,\,\,y\) và hai số thực \(\alpha ,\,\,\beta \) tùy ý. Khẳng định nào sau đây là sai?
I. Trắc nghiệm (7 điểm)
Cho hai số thực dương \(x,\,\,y\) và hai số thực \(\alpha ,\,\,\beta \) tùy ý. Khẳng định nào sau đây là sai?
A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Với hai số thực dương \(x,\,\,y\) và hai số thực \(\alpha ,\,\,\beta \) tùy ý, ta có:
+) \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\) (nhân hai lũy thừa cùng cơ số);
+) \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\) (lũy thừa của lũy thừa);
+) \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\) (lũy thừa của một tích).
Khi đó, áp dụng công thức lũy thừa của một tích ta có
\({\left( {xy} \right)^{\alpha + \beta }} = {x^{\alpha + \beta }} \cdot {y^{\alpha + \beta }} \ne {x^\alpha } \cdot {y^\beta }\) (dấu bằng chỉ xảy ra khi \(\alpha = \beta = 0\)).
Từ đó suy ra đáp án B sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(I\) là trung điểm của \(AD\) nên suy ra \(SI \bot \left( {ABCD} \right)\).
Kẻ \[Ax\parallel BD\].
Do đó \[d\left( {BD,SA} \right) = d\left( {BD,\left( {SAx} \right)} \right) = d\left( {B,\left( {SAx} \right)} \right) = 2d\left( {I,\left( {SAx} \right)} \right)\].
Kẻ \[IE \bot Ax\] tại \[E\], kẻ \[IK \bot SE\] tại \[K\]. Khi đó \[d\left( {I,\left( {SAx} \right)} \right) = IK\].
Gọi \[F\] là hình chiếu của \[I\] trên \[BD\], ta có: \[IE = IF = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{4}\].
Tam giác vuông \[SIE\], có: \[IK = \frac{{SI.IE}}{{\sqrt {S{I^2} + I{E^2}} }} = \frac{{a\sqrt {21} }}{{14}}\].
Vậy \[d\left( {BD,SA} \right) = 2IK = \frac{{a\sqrt {21} }}{7}\].
Lời giải

a) Ta có \(\left\{ \begin{array}{l}CD \bot SA\,\,\,\,\,\,\left( {{\rm{v\`i }}SA \bot \left( {ABCD} \right)} \right)\\CD \bot AD\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).
b) Gọi \(O = AC \cap BD.\)
Ta có \(\left\{ \begin{array}{l}CO \bot BD\\SO \bot BD\,\,\,\,\left( {{\rm{v\`i }}\,\,\,SB = SD\,} \right)\end{array} \right. \Rightarrow \left[ {S,\,\,BD,\,\,C} \right] = \widehat {SOC}\).
\(\Delta SOA\) vuông tại \(A:\) \(AO = \frac{{a\sqrt 2 }}{2} = SA \Rightarrow \)\(\widehat {SOA} = 45^\circ \Rightarrow \widehat {SOC} = 135^\circ \).
Vậy số đo của góc nhị diện \(\left[ {S,\,\,BD,\,\,C} \right]\) bằng \(135^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.