(1,0 điểm) Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[SA\] vuông góc với mặt đáy, \(SA = a\sqrt 2 \). Gọi \[I,K\] là trung điểm của \(BC\) và \(CD\).
a) Chứng minh \[IK \bot \left( {SAC} \right)\].
b) Tính góc giữa 2 mặt phẳng \[\left( {SBD} \right)\] và \[\left( {ABCD} \right).\]
(1,0 điểm) Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[SA\] vuông góc với mặt đáy, \(SA = a\sqrt 2 \). Gọi \[I,K\] là trung điểm của \(BC\) và \(CD\).
a) Chứng minh \[IK \bot \left( {SAC} \right)\].
b) Tính góc giữa 2 mặt phẳng \[\left( {SBD} \right)\] và \[\left( {ABCD} \right).\]
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a)
![Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/screenshot-4733-1766623879.png)
Ta có \(SA \bot \left( {ABCD} \right)\) nên \[BD \bot SA\], lại có \(ABCD\) là hình vuông nên \[BD \bot AC\].
Từ đó suuy ra \[BD \bot \left( {SAC} \right)\].
Ta chứng minh được \[IK\] là đường trung bình của tam giác \[BCD\] nên \[IK{\rm{//}}BD\].
Do đó, \[IK \bot \left( {SAC} \right)\].
b)
![Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/12/screenshot-4734-1766623916.png)
Ta có \[\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\], \[AO \bot BD\], \[BD \bot SA \Rightarrow SO \bot BD\].
Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\] và \[\left( {ABCD} \right)\] là \[\widehat {AOS}\] .
Ta có \(AC = 2a\sqrt 2 \Rightarrow AO = \frac{{AC}}{2} = a\sqrt 2 \).
Vì tam giác \[SAO\] vuông tại \[A\] \[ \Rightarrow \tan \widehat {AOS} = \frac{{SA}}{{AO}} = 1 \Rightarrow \widehat {AOS} = 45^\circ \].
Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\] và \[\left( {ABCD} \right)\] bằng \[45^\circ \].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Hàm số \(y = {\log _a}x\) \(\left( {0 < a \ne 1} \right)\) có tập xác định là \(D = \left( {0; + \infty } \right)\) nên ta loại ngay đáp án A và đáp án B.
Quan sát hình vẽ ta thấy đồ thị hàm số đi lên từ trái qua phải trên \(\left( {0; + \infty } \right)\) nên hàm số này đồng biến trên \(\left( {0; + \infty } \right)\), vậy ta chọn đáp án D.
Câu 2
Lời giải
Đáp án đúng là: B
Ta có \({\log _9}10 = {\log _{{3^2}}}\left( {2 \cdot 5} \right) = \frac{1}{2}{\log _3}\left( {2 \cdot 5} \right) = \frac{1}{2}\left( {{{\log }_3}2 + {{\log }_3}5} \right)\).
Áp dụng công thức đổi cơ số ta có \({\log _2}3 = \frac{{{{\log }_3}3}}{{{{\log }_3}2}} = \frac{1}{{{{\log }_3}2}}\), suy ra \({\log _3}2 = \frac{1}{{{{\log }_2}3}} = \frac{1}{a}\).
Tương tự \({\log _2}5 = \frac{{{{\log }_3}5}}{{{{\log }_3}2}} \Rightarrow {\log _3}5 = {\log _2}5 \cdot {\log _3}2 = b \cdot \frac{1}{a} = \frac{b}{a}\).
Do đó, \({\log _9}10 = \frac{1}{2}\left( {\frac{1}{a} + \frac{b}{a}} \right) = \frac{{1 + b}}{{2a}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


