Câu hỏi:

25/12/2025 9 Lưu

Cho hình chóp \[S.ABC\]\[SA \bot \left( {ABC} \right)\] và tam giác \[ABC\] vuông tại \[B\] (như hình vẽ dưới).

Đáp án đúng là: B (ảnh 1)

Góc giữa đường thẳng \[SC\] và mặt phẳng \[\left( {SAB} \right)\]

A. \[\widehat {SCB}\].                           
B. \[\widehat {SBC}\].                          
C. \[\widehat {BSC}\].                          
D. \[\widehat {SCA}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

\[SA \bot \left( {ABC} \right)\] nên \(SA \bot BC\).

Vì tam giác \[ABC\] vuông tại \[B\] nên \(BC \bot AB\).

Từ đó suy ra \(BC \bot \left( {SAB} \right)\). Do đó \(B\) là hình chiếu của \(C\) lên mặt phẳng \(\left( {SAB} \right)\).

Khi đó giữa đường thẳng \[SC\] và mặt phẳng \[\left( {SAB} \right)\]\[\widehat {BSC}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD (ảnh 1)

Ta có \(SA \bot \left( {ABCD} \right)\) nên \(AB\) là hình chiếu của \(SB\) trên \(\left( {ABCD} \right)\) suy ra góc giữa \(SB\)\(\left( {ABCD} \right)\)\(\widehat {SBA} = 60^\circ \).

Dựng hình bình hành \(MCBE\). Gọi \(I\) là hình chiếu của \(A\) trên \(BE\)\(H\) là hình chiếu của \(A\) trên \(SI\).

Ta chứng minh được \(AH \bot \left( {SBE} \right)\).

Khi đó \(d\left( {CM,SB} \right) = d\left( {CM,\left( {SBE} \right)} \right) = d\left( {M,\left( {SBE} \right)} \right) = 2d\left( {A,\left( {SBE} \right)} \right) = 2AH\).

Mặt khác \(AI = \frac{{AE.AB}}{{\sqrt {A{E^2} + A{B^2}} }} = \frac{{a\sqrt 2 }}{2}\)\(SA = AB \cdot \tan 60^\circ = a\sqrt 3 .\)

Vậy \[d\left( {CM,SB} \right) = 2AH = \]\(\frac{{2AI \cdot SA}}{{\sqrt {A{I^2} + S{A^2}} }} = \frac{{a\sqrt 2 \cdot a\sqrt 3 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {a\sqrt 3 } \right)}^2}} }} = \frac{{2\sqrt {21} a}}{{27}}\).

Lời giải

a)

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông, tam giác (ảnh 1)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).

Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).

b) Gọi \(H = FC \cap DI\).

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông, tam giác (ảnh 2)

Xét hai tam giác vuông \(ADI\)\(DCF\)

\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).

\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]

\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].

Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).

Câu 3

A. \(x = 1\).             
B. \(x = 2\).             
C. \(x = - 1\).   
D. \(x = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt[3]{{{a^2}}}\).                          
B. \({a^{\frac{8}{3}}}\).      
C. \({a^{\frac{3}{8}}}\).      
D. \(\sqrt[6]{a}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ {3\,;\, + \infty } \right)\).        
B. \(\left( { - \infty \,;\, + \infty } \right)\).                          
C. \(\left[ {0\,;\, + \infty } \right)\).              
D. \(\left( {0\,;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(V = 4{a^3}\).   
B. \(V = \frac{{2{a^3}}}{3}\).      
C. \(V = \frac{{4{a^3}}}{3}\).      
D. \(V = \frac{{4{a^2}}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP