Câu hỏi:

25/12/2025 13 Lưu

Hai bạn Trung và Dũng của lớp 11A tham gia giải bóng bàn đơn nam do nhà trường tổ chức. Hai bạn đó không cùng thuộc một bảng đấu loại và chỉ chọn một người vào vòng chung kết. Xác suất lọt qua vòng loại để vào chung kết của Trung và Dũng lần lượt là \(0,8\)\(0,6\). Tính xác suất của biến cố\(A\): “Cả hai bạn lọt vào chung kết”.

A. \(0,48\).               
B. \(0,8\).               
C. \(0,36\).                            
D. \(0,64\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Gọi biến cố \(E\): “Bạn Trung lọt vào chung kết”;

biến cố \(F\): “Bạn Dũng lọt vào chung kết.

Theo bài ra ta có \(P\left( E \right) = 0,8;\,\,P\left( F \right) = 0,6\).

Vì hai bạn đó không cùng thuộc một bảng đấu loại nên hai biến cố \(E\)\(F\) độc lập.

biến cố\(A\): “Cả hai bạn lọt vào chung kết” nên \(A = E \cap F\).

Áp dụng công thức nhân xác suất ta có:

\(P\left( A \right) = P\left( {E \cap F} \right) = P\left( E \right) \cdot P\left( F \right) = 0,8 \cdot 0,6 = 0,48\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({M_o} = \frac{{70}}{3}\).                       

B. \({M_o} = \frac{{50}}{3}\).              
C. \({M_o} = \frac{{70}}{2}\).              
D. \({M_o} = \frac{{80}}{3}\).

Lời giải

Đáp án đúng là: A

Tần số lớn nhất là 7 nên nhóm chứa mốt là \(\left[ {20;30} \right)\).

Ta có: \(u = 20\), \({n_3} = 7\), \({n_2} = 6,\,\,{n_4} = 5\), \(g = 10\).

Do đó, \({M_o} = 20 + \frac{{7 - 6}}{{2 \cdot 7 - 6 - 5}} \cdot 10 = \frac{{70}}{3}\).

Lời giải

Cho hình chóp \(S.ABCD\) có (ảnh 1)

a) Ta có \(\left. \begin{array}{l}BC \bot AB\\BC \bot SA{\rm{ }}\left( {do{\rm{ SA}} \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\).

\(\left. \begin{array}{l}BC \bot \left( {SAB} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow BC \bot SB\).

b) Kẻ \(AM \bot BD\,\,\,\left( {M \in BD} \right)\).

Khi đó, \(BD \bot \left( {SAM} \right)\) (do \(\left\{ \begin{array}{l}BD \bot SA\\BD \bot AM\end{array} \right.\)).

Suy ra \(BD \bot SM\). Khi đó \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {A,BD,S} \right]\).

Ta có \(AM = \frac{{AB \cdot AD}}{{BD}} = \frac{{a\sqrt 3 }}{2}\), \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{4\sqrt 3 }}{3}\).

Vậy tan của góc nhị diện \(\left[ {A,BD,S} \right]\) bằng \(\frac{{4\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( {1; + \infty } \right)\].            
B. \[\left( { - \infty ;\frac{1}{2}} \right)\].                          
C. \[\left( {\frac{1}{2}; + \infty } \right)\].                    
D. \[\left[ {\frac{1}{2}; + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{3}{4}\).   
B. \(3\).                    
C. \(\frac{3}{2}\).                
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP