Câu hỏi:

25/12/2025 30 Lưu

Qua điểm \(O\) cho trước, có bao nhiêu mặt phẳng vuông góc với đường thẳng \(\Delta \) cho trước?        

A. Vô số.                 
B. \(2.\)                    
C. \(3.\)        
D. \(1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Qua điểm \(O\) cho trước, có duy nhất một mặt phẳng vuông góc với đường thẳng \(\Delta \) cho trước.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

  A. 8.                         
B. \(4\).                    
C. \(2\). 
D. 16.

Lời giải

Đáp án đúng là: D

Ta có \({a^{{{\log }_{\sqrt a }}4}} = {a^{{{\log }_{{a^{\frac{1}{2}}}}}4}} = {a^{2{{\log }_a}{2^2}}} = {a^{4{{\log }_a}2}} = {\left( {{a^{{{\log }_a}2}}} \right)^4} = {2^4} = 16\).

Câu 2

A. \(P = {a^{\sqrt 3 }}\).                         
B. \(P = \frac{1}{a}\).                   
C. \(P = a\).             
D. \(P = \frac{1}{{{a^{\sqrt 3 }}}}\).

Lời giải

Đáp án đúng là: B

Ta có \(P = \frac{{{a^{2 + \sqrt 3 }} \cdot {{\left( {{a^{1 - \sqrt 3 }}} \right)}^{1 + \sqrt 3 }}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{2 + \sqrt 3 }} \cdot {a^{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{2 + \sqrt 3 }} \cdot {a^{ - 2}}}}{{{a^{1 + \sqrt 3 }}}} = \frac{{{a^{\sqrt 3 }}}}{{{a^{1 + \sqrt 3 }}}} = \frac{1}{a}\).

Câu 3

A. \(\frac{{\sqrt 2 }}{2}\).                       
B. \( - \frac{{\sqrt 2 }}{2}\).      
C. \(\sqrt 2 \).          
D. \( - \sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({a^5}{b^4}\).   
B. \({a^4}{b^5}\).   
C. \(5a + 4b\).                                 
D. \(4a + 5b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP