Câu hỏi:

25/12/2025 9 Lưu

Cho hai đường thẳng \({d_1}:6x - 5y + 9 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 2 - 12t\\y = 5 + 10t\end{array} \right.\). Khi đó

A. Hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau;          

B. Hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau nhưng không vuông góc;

C. Hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau;          

D. Hai đường thẳng \({d_1}\) và \({d_2}\) trùng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đường thẳng \({d_1}:6x - 5y + 9 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {6;\,\, - 5} \right)\).

Đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 2 - 12t\\y = 5 + 10t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( { - 12;\,10} \right)\), nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {10;\,\,12} \right)\).

Nhận thấy: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 6.10 + \left( { - 5} \right).12 = 0\). Do đó, hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\)(nghìn đồng) là số tiền tăng thêm khi bán ra một cốc trà sữa \(\left( {x \ge 0} \right)\).

Số cốc trà sữa bán được sau khi tăng giá thêm \(x\)(nghìn đồng) là: \(2\,200 - 100x\) (cốc).

Số tiền lãi thu được là:

\(\left( {30 + x - 22} \right)\left( {2\,\,200 - 100x} \right) = \left( {8 + x} \right)\left( {2\,200 - 100x} \right) =  - 100{x^2} + 1\,400x + 17600\) (nghìn đồng).

Để lợi nhuận thu được là lớn nhất thì phải tìm được \(x\) sao cho hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) lớn nhất.

Hàm số này là hàm số bậc hai có \(a =  - 100 < 0\) nên nó đạt giá trị lớn nhất tại đỉnh của đồ thị hàm số.

Hoành độ đỉnh của đồ thị hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) là \(x =  - \frac{b}{{2a}} =  - \frac{{1400}}{{2.\left( { - 100} \right)}} = 7\) (thỏa mãn \[x \ge 0\]).

Khi đó số tiền phải tăng lên để lợi nhuận lớn nhất là 7 nghìn đồng hay chính là bán ra một cốc trà sữa với giá 30 + 7 = 37 (nghìn đồng).

Vậy cửa hàng phải bán mỗi cốc trà sữa với giá 37 000 đồng để đạt lợi nhuận lớn nhất.

Lời giải

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\) (ảnh 1)

Xét hệ phương trình \(\left\{ \begin{array}{l}x - y = 0\\x - 7y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\).

Do đó, \({\Delta _1} \cap {\Delta _2} = O\left( {0;0} \right)\). Gọi \(A,\,\,B\) lần lượt là hai tiếp điểm của \(\left( {C'} \right)\) với \({\Delta _1},{\Delta _2}.\)

Ta có tam giác \(OAB\) cân tại \(O\) và \(K\) thuộc đường phân giác của \(\widehat {AOB}\).

Mặt khác, ta chứng minh được phương trình đường phân giác của \(\widehat {AOB}\) là:

\(\frac{{x - y}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} =  \pm \frac{{x - 7y}}{{\sqrt {{1^2} + {{\left( { - 7} \right)}^2}} }} \Leftrightarrow \left[ \begin{array}{l}2x + y = 0\\x - 2y = 0\end{array} \right.\) .

Vì \(K \in \left( C \right)\) nên tọa độ điểm \(K\) là nghiệm của các hệ phương trình

\(\left\{ \begin{array}{l}2x + y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\,\)  (Vô nghiệm)  và  \(\left\{ \begin{array}{l}x - 2y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\, \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{4}{5}\end{array} \right.\).  

Vậy \(K\left( {\frac{8}{5};\,\frac{4}{5}} \right).\)

Câu 3

A. \(\mathbb{R}\backslash \left\{ { - 1;\,\,6} \right\}\);                              

B. \(\left( { - \infty ;\,\,5} \right)\); 

C. \(\left( { - \infty ;\,\,5} \right]\backslash \left\{ { - 1} \right\}\);                
D. \(\left( {\infty ;\,\,5} \right)\backslash \left\{ { - 1;\,\,6} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{{\sqrt {10} }}\);                           
B. \(\frac{2}{{\sqrt {10} }}\);         
C. \(\frac{3}{{\sqrt {10} }}\);                                
D. \(\frac{4}{{\sqrt {10} }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:  Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng (ảnh 1)

Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng

A. \(\left( {2;\,\,3} \right)\);                              
B. \(\left( {1;\,\,3} \right)\);  
C. \(\left( {0;\,\,2} \right)\);                     
D. \(\left( { - 1;\,\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + 3\). Giá trị của hàm số tại \(x = 1\) là

A. 3;                          
B. 1;                              
C. 0;                           
D. – 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x =  - 3\);             
B. \(x = \frac{3}{2}\);    
C. \(x =  - \frac{3}{2}\);                 
D. \(x = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP