Câu hỏi:

25/12/2025 94 Lưu

Nếu \({\log _a}b = 4\) thì \({\log _{\sqrt a }}{b^2} + {\log _a}\left( {ab} \right)\) bằng        

A. 9.                         
B. 21.                       
C. 20.   
D. 13.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\({\log _a}b = 4\) nên \(a,\,b\) là các số thực dương và \(a \ne 1\).

Khi đó, ta có \({\log _{\sqrt a }}{b^2} + {\log _a}\left( {ab} \right)\)\( = {\log _{{a^{\frac{1}{2}}}}}{b^2} + \left( {{{\log }_a}a + {{\log }_a}b} \right)\)

                                         \( = 2 \cdot 2{\log _a}b + 1 + {\log _a}b = 5{\log _a}b + 1 = 5 \cdot 4 + 1 = 21\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có \[C = \frac{{{a^{\frac{3}{4}}}\left( {{a^{\frac{3}{2}}} - {a^{\frac{4}{3}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {a - {a^{\frac{5}{6}}}} \right)}} = \frac{{{a^{\frac{3}{4}}} \cdot {a^{\frac{4}{3}}}\left( {{a^{\frac{1}{6}}} - 1} \right)}}{{{a^{\frac{1}{4}}} \cdot {a^{\frac{5}{6}}}\left( {{a^{\frac{1}{6}}} - 1} \right)}} = \frac{{{a^{\frac{4}{3} + \frac{3}{4}}}}}{{{a^{\frac{1}{4} + \frac{5}{6}}}}} = \frac{{{a^{\frac{{25}}{{12}}}}}}{{{a^{\frac{{13}}{{12}}}}}} = {a^{\frac{{25}}{{12}} - \frac{{13}}{{12}}}} = a\].

Lời giải

Ta có \(\left( {5 + 2\sqrt 6 } \right)\left( {5 - 2\sqrt 6 } \right) = {5^2} - {\left( {2\sqrt 6 } \right)^2} = 25 - 24 = 1\).

Do đó:

\(P = {\left( {5 + 2\sqrt 6 } \right)^{2018}} \cdot {\left( {5 - 2\sqrt 6 } \right)^{2019}} = {\left[ {\left( {5 + 2\sqrt 6 } \right)\left( {5 - 2\sqrt 6 } \right)} \right]^{2018}} \cdot \left( {5 - 2\sqrt 6 } \right) = 5 - 2\sqrt 6 \).

Câu 3

A. \({a^8}\).            
B. \({a^2}\).           
C. \({a^{\frac{7}{2}}}\).      
D. \({a^{\frac{9}{2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m < n.\)            
B. \(m = n.\)            
C. \(m > n.\)  
D. \(m = - n\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP