Câu hỏi:

25/12/2025 55 Lưu

III. Lời giải chi tiết tự luận

 (1,5 điểm)

1. Tính giá trị của biểu thức \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

Câu hỏi cùng đoạn

Câu 2:

2. Cho \[a = {\log _2}3;b = {\log _3}5;c = {\log _7}2.\] Tính giá trị của \[{\log _{140}}63\] theo \(a,\,b,\,c\).

Xem lời giải

verified Giải bởi Vietjack

2. (0,5 điểm)

Ta có \[{\log _{140}}63 = \frac{{{{\log }_2}63}}{{{{\log }_2}140}} = \frac{{{{\log }_2}\left( {{3^2} \cdot 7} \right)}}{{{{\log }_2}\left( {{2^2} \cdot 5 \cdot 7} \right)}} = \frac{{2{{\log }_2}3 + {{\log }_2}7}}{{2 + {{\log }_2}5 + {{\log }_2}7}}\]

                     \[ = \frac{{2{{\log }_2}3 + \frac{1}{{{{\log }_7}2}}}}{{2 + {{\log }_2}3 \cdot {{\log }_3}5 + \frac{1}{{{{\log }_7}2}}}} = \frac{{2a + \frac{1}{c}}}{{2 + ab + \frac{1}{c}}}\]

                     \[ = \frac{{1 + 2ac}}{{1 + 2c + abc}}.\]

Câu 3:

3. Năm \(2023\), một hãng xe ô tô niêm yết giá bán loại xe \(X\)\(750\,\,000\,\,000\) đồng và dự định trong \(10\) năm tiếp theo, mỗi năm giảm \(1,8\% \) giá bán của năm liền trước. Theo dự định đó, năm \(2030\) hãng xe ô tô niêm yết giá bán xe \(X\) là bao nhiêu (kết quả làm tròn đến hàng nghìn)?

Xem lời giải

verified Giải bởi Vietjack

3. (0,5 điểm)

Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.

Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).

Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.

Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.

Vậy giá bán xe năm thứ 8 (năm 2030) là:

\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chứng minh \(BC \bot \left( {SAB} \right)\). (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).

Từ đó suy ra \(BC \bot \left( {SAB} \right)\).

Câu 2

A. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[O\].
B. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[A\].
C. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[B\].
D. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[C\].

Lời giải

Đáp án đúng là: A

Đáp án đúng là: A (ảnh 1)

\[ABCD\] là hình bình hành tâm \[O\] nên \[O\] là trung điểm của \(AC\)\(BD\).

Tam giác \(SAC\)\[SA = SC\] nên tam giác \(SAC\) cân tại \(S\), lại có \(SO\) là trung tuyến, do đó \(SO \bot AC\). (1)

Tam giác \(SBD\)\[SB = SD\] nên tam giác \(SBD\) cân tại \(S\), lại có \(SO\) là trung tuyến, do đó \(SO \bot BD\). (2)

Ta có \(AC,\,\,BD \subset \left( {ABCD} \right)\). (3)

Từ (1), (2) và (3) suy ra \(SO \bot \left( {ABCD} \right)\), vậy hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[O\].

Câu 3

A. \(\left( {ABCD} \right)\).                   
B. \(\left( {SAB} \right)\).                          
C. \(\left( {SAD} \right)\).                          
D. \(\left( {SAC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat {SAC}\).                           
B. \(\widehat {SOC}\).                          
C. \(\widehat {CSA}\).                          
D. \(\widehat {ACS}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Góc giữa hai đường thẳng \(a\)\(b\) có số đo từ 0° đến 180°.
B. Góc giữa hai đường thẳng \(a\)\(b\) bằng 0° khi đường thẳng \(a\) song song hoặc trùng với đường thẳng \(b\).
C. Góc giữa hai đường thẳng song song bằng 180°.
D. Góc giữa hai đường thẳng luôn luôn là góc nhọn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP