Câu hỏi:

25/12/2025 100 Lưu

(1,5 điểm) Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\) và có cạnh \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).

a) Chứng minh \(BC \bot \left( {SAB} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chứng minh \(BC \bot \left( {SAB} \right)\). (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).

Từ đó suy ra \(BC \bot \left( {SAB} \right)\).

Câu hỏi cùng đoạn

Câu 2:

b) Gọi \(AH\) là đường cao của tam giác \(SAB\). Chứng minh \(AH \bot SC\).

Xem lời giải

verified Giải bởi Vietjack

 b) Vì \(BC \bot \left( {SAB} \right)\)\(AH\) nằm trong \(\left( {SAB} \right)\) nên \(BC \bot AH\).

Ta lại có \(AH \bot SB\) (do \(AH\) là đường cao của tam giác \(SAB\))

Khi đó, \(AH \bot \left( {SBC} \right)\). Từ đó suy ra \(AH \bot SC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có bảng sau:

Doanh thu

\(\left[ {5;7} \right)\)

\(\left[ {7;9} \right)\)

\(\left[ {9;11} \right)\)

\(\left[ {11;13} \right)\)

\(\left[ {13;15} \right)\)

Giá trị đại diện

6

8

10

12

14

Số ngày

2

7

7

3

1

 

Số trung bình của mẫu số liệu là \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4.\)

Lời giải

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

Câu 3

A. \(\left( {ABCD} \right)\).                   
B. \(\left( {SAB} \right)\).                          
C. \(\left( {SAD} \right)\).                          
D. \(\left( {SAC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{2a}}{{1 + b}}\).                     
B. \(\frac{{1 + b}}{{2a}}\) .                    
C. \(\frac{b}{{2a}}\) .       
D. \(\frac{{1 - b}}{{2a}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 3.                         
B. \(\frac{1}{3}\).   
C. \( - 3\).   
D. \( - \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP