Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Số học sinh khối 10 được đo chiều cao là \(5 + 18 + 40 + 26 + 8 + 3 = 100\).
Giả sử \({x_1};{x_2};...;{x_{100}}\) là chiều cao của 100 học sinh lớp 10 xếp theo thứ tự không giảm.
Do \({x_1};...;{x_5} \in \left[ {150;152} \right)\) ; \({x_6};...;{x_{23}} \in \left[ {152;154} \right)\) ; \({x_{24}};...;{x_{63}} \in \left[ {154;156} \right)\) .
Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\) mà \({x_{25}};{x_{26}} \in \left[ {154;156} \right)\).
Khi đó \(n = 100;{u_m} = 154;C = 23;{n_m} = 40;{u_{m + 1}} = 156\).
Do đó \({Q_1} = 154 + \frac{{\frac{{100}}{4} - 23}}{{40}}\left( {156 - 154} \right) = 154,1\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Với \(b > 1 > a > 0\) ta có:
\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4\]
\[ \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b = - 3\end{array} \right.\].
Vì \(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b = - 3\).
Khi đó, \(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2 \cdot \left( { - 3} \right)} \right)^3} = - 125\).
2. Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]
\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\].
Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.
Lời giải
![Cho hình chóp \[S.ABC\] có đáy \[ABC\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766709385.png)
a) Ta có tam giác \[ABC\] là tam giác đều và \(M\) là trung điểm của \(BC\) nên \(AM \bot BC\).
Mà \(SA \bot BC\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\), do đó \[BC \bot \left( {SAM} \right)\]. Suy ra \[BC \bot AH\].
Vì \[H\] là hình chiếu vuông góc của \[A\] lên \[SM\] nên \[AH \bot SM\].
Ta suy ra \[AH \bot \left( {SBC} \right)\].
b) Vì \[AH \bot \left( {SBC} \right)\] nên \[SH\] là hình chiếu của \[SA\] lên mặt phẳng \[\left( {SBC} \right)\].
c) Từ b) ta suy ra góc giữa đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] là góc \[\alpha = \widehat {ASH}\].
Xét tam giác \[SAM\] vuông tại \[A\] ta có:
\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\]\[ \Rightarrow A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\].
Xét tam giác \[SAH\] vuông tại \[H\] ta có: \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].
Do đó, \(\cos \widehat {ASH} = \frac{{2\sqrt {22} }}{{11}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

