Câu hỏi:

26/12/2025 37 Lưu

Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả

Đo chiều cao các em học sinh khối \(10\) ta thu được kết quả Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là (ảnh 1)

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là

A. \[152,2\].             
B. \[153,3\].             
C. \[154,1\].                          
D. \[151,5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Số học sinh khối 10 được đo chiều cao là \(5 + 18 + 40 + 26 + 8 + 3 = 100\).

Giả sử \({x_1};{x_2};...;{x_{100}}\) là chiều cao của 100 học sinh lớp 10 xếp theo thứ tự không giảm.

Do \({x_1};...;{x_5} \in \left[ {150;152} \right)\) ; \({x_6};...;{x_{23}} \in \left[ {152;154} \right)\) ; \({x_{24}};...;{x_{63}} \in \left[ {154;156} \right)\) .

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\) mà \({x_{25}};{x_{26}} \in \left[ {154;156} \right)\).

Khi đó \(n = 100;{u_m} = 154;C = 23;{n_m} = 40;{u_{m + 1}} = 156\).

Do đó \({Q_1} = 154 + \frac{{\frac{{100}}{4} - 23}}{{40}}\left( {156 - 154} \right) = 154,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Với \(b > 1 > a > 0\) ta có:

\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4\]

\[ \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b = - 3\end{array} \right.\].

\(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b = - 3\).

Khi đó, \(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2 \cdot \left( { - 3} \right)} \right)^3} = - 125\).

2. Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]

\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\].

Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.

Lời giải

Cho hình chóp \[S.ABC\] có đáy \[ABC\] (ảnh 1)

a) Ta có tam giác \[ABC\] là tam giác đều và \(M\) là trung điểm của \(BC\) nên \(AM \bot BC\).

\(SA \bot BC\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\), do đó \[BC \bot \left( {SAM} \right)\]. Suy ra \[BC \bot AH\].

\[H\] là hình chiếu vuông góc của \[A\] lên \[SM\] nên \[AH \bot SM\].

Ta suy ra \[AH \bot \left( {SBC} \right)\].

b) Vì \[AH \bot \left( {SBC} \right)\] nên \[SH\] là hình chiếu của \[SA\] lên mặt phẳng \[\left( {SBC} \right)\].

c) Từ b) ta suy ra góc giữa đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] là góc \[\alpha = \widehat {ASH}\].

Xét tam giác \[SAM\] vuông tại \[A\] ta có:

\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\]\[ \Rightarrow A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\].

Xét tam giác \[SAH\] vuông tại \[H\] ta có: \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].

Do đó, \(\cos \widehat {ASH} = \frac{{2\sqrt {22} }}{{11}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(SC \bot \left( {AFB} \right)\).        
B. \(SC \bot \left( {AEC} \right)\).              
C. \(SC \bot \left( {AED} \right)\).                          
D. \(SC \bot \left( {AEF} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP