Cho hình chóp \(S.ABCD\) có \[SA \bot \left( {ABC} \right)\], đáy \(ABCD\) là hình thoi cạnh bằng \(a\) và \(AC = a\), số đo góc nhị diện \(\left[ {B,SA,C} \right]\) bằng
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có \[SA \bot \left( {ABC} \right)\] nên \(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right.\).
Do đó \(\widehat {BAC}\) là một góc phẳng của góc góc nhị diện \(\left[ {B,SA,C} \right]\).
Ta có \(\Delta ABC\) có \(AB = BC = AC = a\) nên \(\Delta ABC\) là tam giác đều, suy ra \(\widehat {BAC} = 60^\circ \).
Vậy số đo góc nhị diện \(\left[ {B,SA,C} \right]\) bằng \(60^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình chóp \[S.ABC\] có đáy \[ABC\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766709385.png)
a) Ta có tam giác \[ABC\] là tam giác đều và \(M\) là trung điểm của \(BC\) nên \(AM \bot BC\).
Mà \(SA \bot BC\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\), do đó \[BC \bot \left( {SAM} \right)\]. Suy ra \[BC \bot AH\].
Vì \[H\] là hình chiếu vuông góc của \[A\] lên \[SM\] nên \[AH \bot SM\].
Ta suy ra \[AH \bot \left( {SBC} \right)\].
b) Vì \[AH \bot \left( {SBC} \right)\] nên \[SH\] là hình chiếu của \[SA\] lên mặt phẳng \[\left( {SBC} \right)\].
c) Từ b) ta suy ra góc giữa đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] là góc \[\alpha = \widehat {ASH}\].
Xét tam giác \[SAM\] vuông tại \[A\] ta có:
\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\]\[ \Rightarrow A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\].
Xét tam giác \[SAH\] vuông tại \[H\] ta có: \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].
Do đó, \(\cos \widehat {ASH} = \frac{{2\sqrt {22} }}{{11}}\).
Lời giải
1. Với \(b > 1 > a > 0\) ta có:
\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4\]
\[ \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b = - 3\end{array} \right.\].
Vì \(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b = - 3\).
Khi đó, \(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2 \cdot \left( { - 3} \right)} \right)^3} = - 125\).
2. Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]
\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\].
Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
