(1,0 điểm) Trên một bảng quảng cáo, người ta mắc hai hệ thống bóng đèn. Hệ thống I gồm 2 bóng mắc nối tiếp, hệ thống II gồm 2 bóng mắc song song. Khả năng bị hỏng của mỗi bóng đèn sau 6 giờ thắp sáng liên tục là 0,15. Biết tình trạng của mỗi bóng đèn là độc lập. Tính xác suất để cả hai hệ thống bị hỏng (không sáng).
(1,0 điểm) Trên một bảng quảng cáo, người ta mắc hai hệ thống bóng đèn. Hệ thống I gồm 2 bóng mắc nối tiếp, hệ thống II gồm 2 bóng mắc song song. Khả năng bị hỏng của mỗi bóng đèn sau 6 giờ thắp sáng liên tục là 0,15. Biết tình trạng của mỗi bóng đèn là độc lập. Tính xác suất để cả hai hệ thống bị hỏng (không sáng).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Nhận xét: Hệ thống I gồm 2 bóng mắc nối tiếp nên nó chỉ hoạt động bình thường khi cả hai bóng bình thường. Hệ thống II gồm 2 bóng được mắc song song nên nó chỉ hỏng khi cả hai bóng đều hỏng.
⦁ Gọi \(A\) là biến cố: “Hệ thống đèn bị hỏng sau 6 giờ thắp sáng” thì \(\overline A \) là biến cố “Hệ thống đèn hoạt động bình thường sau 6 giờ thắp sáng”.
Do khả năng bị hỏng của mỗi bóng đèn sau 6 giờ thắp sáng liên tục là 0,15 nên xác suất để 1 bóng đèn hoạt động bình thường sau 6 giờ thắp sáng là 1 – 0,15 = 0,85.
Xác suất để hệ thống đèn hoạt động bình thường sau 6 giờ thắp sáng là:
\(P\left( {\overline A } \right) = 0,85 \cdot 0,85 = 0,7225\).
Suy ra \(P\left( A \right) = 1 - 0,7225 = 0,2775\).
⦁ Gọi \(B\) là biến cố: “Hệ thống đèn bị hỏng sau 6 giờ thắp sáng”.
Do khả năng bị hỏng của mỗi bóng đèn sau 6 giờ thắp sáng liên tục là 0,15 nên xác suất để 1 bóng đèn bị hỏng sau 6 giờ thắp sáng là 0,15.
Xác suất để hệ thống đèn bị hỏng sau 6 giờ thắp sáng là \[P\left( B \right) = 0,15 \cdot 0,15 = 0,0225\].
Vậy xác suất để cả hai hệ thống I, II đều bị hỏng là:
\(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,2775 \cdot 0,0225 = \frac{{999}}{{160\,\,000}} \approx 0,00624.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Với \(b > 1 > a > 0\) ta có:
\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4\]
\[ \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b = - 3\end{array} \right.\].
Vì \(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b = - 3\).
Khi đó, \(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2 \cdot \left( { - 3} \right)} \right)^3} = - 125\).
2. Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]
\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\].
Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.
Lời giải
![Cho hình chóp \[S.ABC\] có đáy \[ABC\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766709385.png)
a) Ta có tam giác \[ABC\] là tam giác đều và \(M\) là trung điểm của \(BC\) nên \(AM \bot BC\).
Mà \(SA \bot BC\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\), do đó \[BC \bot \left( {SAM} \right)\]. Suy ra \[BC \bot AH\].
Vì \[H\] là hình chiếu vuông góc của \[A\] lên \[SM\] nên \[AH \bot SM\].
Ta suy ra \[AH \bot \left( {SBC} \right)\].
b) Vì \[AH \bot \left( {SBC} \right)\] nên \[SH\] là hình chiếu của \[SA\] lên mặt phẳng \[\left( {SBC} \right)\].
c) Từ b) ta suy ra góc giữa đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] là góc \[\alpha = \widehat {ASH}\].
Xét tam giác \[SAM\] vuông tại \[A\] ta có:
\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\]\[ \Rightarrow A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\].
Xét tam giác \[SAH\] vuông tại \[H\] ta có: \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].
Do đó, \(\cos \widehat {ASH} = \frac{{2\sqrt {22} }}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
