Cho các đồ thị hàm số \(y = {a^x},\,y = {\log _b}x,\,y = {x^c}\) ở hình vẽ sau đây.

Khẳng định nào sau đây đúng?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta thấy đồ thị \(y = {x^c}\) đi xuống từ trái qua phải nên \(c < 0\), đồ thị \(y = {a^x}\) đi xuống từ trái qua phải nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên từ trái qua phải nên \(b > 1.\)
Vậy \(c < 0 < a < 1 < b.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Ta có
\[P = {\log _{ab}}x = \frac{1}{{{{\log }_x}ab}} = \frac{1}{{{{\log }_x}a + {{\log }_x}b}} = \frac{1}{{\frac{1}{{{{\log }_a}x}} + \frac{1}{{{{\log }_b}x}}}} = \frac{{{{\log }_a}x.{{\log }_b}x}}{{{{\log }_a}x + {{\log }_b}x}} = \frac{{4.6}}{{4 + 6}} = \frac{{12}}{5}\]
Vậy \(P = \frac{{12}}{5} = 2,4\).
2. Tính từ năm 2013 đến 2024, anh Toàn đã được 3 lần tăng lương.
Lương của anh Toàn sau lần tăng đầu tiên là:
\({L_1} = 6 \cdot 1,25\) (triệu đồng).
Lương của anh Toàn sau lần tăng thứ 2 là:
\({L_2} = {L_1} + 25\% {L_1} = {L_1} \cdot 1,25 = 6 \cdot 1,{25^2}\) (triệu đồng).
Lương của anh Toàn sau lần tăng thứ 3 là:
\({L_3} = {L_2} + 25\% {L_2} = {L_2} \cdot 1,25 = 6 \cdot 1,{25^3} \approx 11,7\) (triệu đồng).
Vậy lương của anh Toàn hiện đang hưởng là \(11,7\) triệu mỗi tháng.
Lời giải

a) Ta có \(\left\{ \begin{array}{l}BC \bot AK\\BC \bot SA\end{array} \right. \Rightarrow BC \bot AH\).
b) Ta có \(AH \bot SK\) mà \(BC \bot AH\) nên \(AH \bot \left( {SBC} \right)\).
c) Vì \(AH \bot \left( {SBC} \right)\) nên \(SK\) là hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBC} \right)\).
Đặt \(\alpha = \left( {SA,\,\left( {SBC} \right)} \right) = \left( {SA,SK} \right) = \widehat {ASK}\).
Ta có \(AK = \frac{{AB \cdot AC}}{{BC}} = \frac{{AB \cdot AC}}{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).
Khi đó \(\tan \alpha = \frac{{AK}}{{AS}} = \frac{{\frac{{2a\sqrt 5 }}{5}}}{{a\sqrt 5 }} = \frac{2}{5}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.