Với các số thực dương \(a,b\) bất kì. Mệnh đề nào dưới đây đúng?
Với các số thực dương \(a,b\) bất kì. Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Theo tính chất của lôgarit ta có \(\forall a > 0,b > 0:\ln \left( {ab} \right) = \ln a + \ln b\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).
Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).
b) Gọi \(H = FC \cap DI\).

Xét hai tam giác vuông \(ADI\) và \(DCF\) có
\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).
\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]
\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].
Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).
Lời giải
Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.
Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)
\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).
Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).
Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).
Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\left( {SAB} \right) \bot \left( {ABC} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
