Câu hỏi:

26/12/2025 6 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?        

A. \(A'C' \bot BD\).                                
B. \(BB' \bot DD'\).                             
C. \(A'B \bot DC'\).                              
D. \(BC' \bot A'D\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đáp án đúng là: D (ảnh 1)

Hình hộp có tất cả các cạnh đều bằng nhau nên mỗi mặt của hình hộp là một hình thoi.

Xét từng đáp án, ta thấy:

+ Đáp án A đúng vì \(\left\{ \begin{array}{l}A'C' \bot B'D'\\B'D'\,{\rm{//}}\,BD\end{array} \right. \Leftrightarrow A'C' \bot BD\).

+ Đáp án B sai vì \[BB'\,{\rm{//}}\,DD'\].

+ Đáp án C đúng vì \(\left\{ \begin{array}{l}A'B \bot AB'\\AB'{\rm{//}}DC'\end{array} \right. \Rightarrow A'B \bot DC'\).

+ Đáp án D đúng vì \(\left\{ \begin{array}{l}BC' \bot B'C\\B'C\,{\rm{//}}\,A'D\end{array} \right. \Rightarrow BC'\,{\rm{//}}\,A'D\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Từ (1) và (2) suy ra \(CF \b (ảnh 1)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).

Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).

b) Gọi \(H = FC \cap DI\).

Từ (1) và (2) suy ra \(CF \b (ảnh 2)

Xét hai tam giác vuông \(ADI\)\(DCF\)

\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).

\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]

\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].

Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).

Lời giải

Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.

Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)

\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).

Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).

Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).

Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).

Câu 4

A. \(x = 1\).             
B. \(x = 2\).             
C. \(x = - 1\).   
D. \(x = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( {SAB} \right) \bot \left( {ABC} \right)\].                         

B. \[\left( {SAB} \right) \bot \left( {SBC} \right)\].                                                       
C. \[\left( {SBC} \right) \bot \left( {ABC} \right)\].                          
D. \[\left( {SAB} \right) \bot \left( {SAC} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \ge 1\).         
B. \(m \ge 0\).         
C. \(m > 0\).   
D. \(m \ne 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP