Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Mặt phẳng \[\left( {{A_1}BD} \right)\] không vuông góc với mặt phẳng nào dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: D

* Gọi \[I = A{B_1} \cap {A_1}B\].
Tam giác \[{A_1}BD\] đều có \[DI\] là đường trung tuyến nên \[DI \bot {A_1}B\].
\[DA \bot \left( {A{A_1}{B_1}B} \right) \Rightarrow DA \bot {A_1}B\].
\[\left. \begin{array}{l}{A_1}B \bot DI\\{A_1}B \bot AD\end{array} \right\} \Rightarrow {A_1}B \bot \left( {A{B_1}D} \right) \Rightarrow \left( {{A_1}BD} \right) \bot \left( {A{B_1}D} \right)\] nên A đúng.
* Ta có \[\left. \begin{array}{l}BD \bot AC\\BD \bot A{A_1}\end{array} \right\} \Rightarrow BD \bot \left( {AC{C_1}{A_1}} \right) \Rightarrow \left( {{A_1}BD} \right) \bot \left( {AC{C_1}{A_1}} \right)\] nên B đúng.
* Gọi \[J = A{D_1} \cap {A_1}D\].
Tam giác \[{A_1}BD\] đều có \[BJ\] là đường trung tuyến nên \[BJ \bot {A_1}D\].
\[BA \bot \left( {A{A_1}{D_1}D} \right) \Rightarrow BA \bot {A_1}D\].
\[\left. \begin{array}{l}{A_1}D \bot BJ\\{A_1}D \bot BA\end{array} \right\} \Rightarrow {A_1}D \bot \left( {AB{D_1}} \right) \Rightarrow \left( {{A_1}BD} \right) \bot \left( {AB{D_1}} \right)\] nên C đúng. Vậy D sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)

Ta có \(\left\{ \begin{array}{l}SI \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\SI \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SI \bot \left( {ABCD} \right)\).
Do \(CF \subset \left( {ABC{\rm{D}}} \right) \Rightarrow SI \bot CF\) (1).
b) Gọi \(H = FC \cap DI\).

Xét hai tam giác vuông \(ADI\) và \(DCF\) có
\(\left\{ \begin{array}{l}AI = DF\\AD = DC\\\widehat {DAI} = \widehat {FDC} = 90^\circ \end{array} \right. \Rightarrow \Delta ADI = \Delta DCF\) (c – g – c).
\[ \Rightarrow \left\{ \begin{array}{l}\widehat {{I_1}} = \widehat {{F_1}}\\\widehat {{D_2}} = \widehat {{C_2}}\end{array} \right.,\,\,{\rm{m\`a }}\,\,\widehat {{I_1}} + \widehat {{D_2}} = 90^\circ \Rightarrow \widehat {{F_1}} + \widehat {{D_2}} = 90^\circ \]
\[ \Rightarrow \widehat {FHD} = 90^\circ \Rightarrow CF \bot DI\,\,(2)\].
Từ (1) và (2) suy ra \(CF \bot \left( {SID} \right)\).
Lời giải
Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.
Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)
\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).
Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).
Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).
Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\left( {SAB} \right) \bot \left( {ABC} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
