Câu hỏi:

26/12/2025 7 Lưu

Cho \[a\] là một số dương, biểu thức \({a^{\frac{2}{3}}}\sqrt a \) viết dưới dạng lũy thừa với số mũ hữu tỉ là         

A. \({a^{\frac{5}{6}}}\).                         
B. \({a^{\frac{7}{6}}}\).      
C. \({a^{\frac{4}{3}}}\).      
D. \({a^{\frac{6}{7}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \({a^{\frac{2}{3}}}\sqrt a = {a^{\frac{2}{3}}} \cdot {a^{\frac{1}{2}}} = {a^{\frac{2}{3} + \frac{1}{2}}} = {a^{\frac{7}{6}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) (0,5 điểm)

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

b) (0,5 điểm)

Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.

Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).

Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.

Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.

Vậy giá bán xe năm thứ 8 (năm 2030) là:

\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.

Lời giải

(1,0 điểm) Cho hình chóp \[S.ABCD\] có đáy là hình vuông và \[SA = SC\], \[SB = SD\]. Gọi \[I,K\] là trung điểm của \[AB,BC\]. Chứng minh \[IK \bot \left( {SBD} \right)\]. (ảnh 1)

Gọi \(O\) là tâm của đáy \(ABCD\).

Tam giác \[SAC\] cân tại \[S\] (do \[SA = SC\]) nên \[SO \bot AC\] hay \[AC \bot SO\].

Đáy là hình vuông nên có \[AC \bot BD\]. Do đó \[AC \bot \left( {SBD} \right)\] (1).

Ta có \[IK\] là đường trung bình của tam giác \[ABC\] nên \[IK\,{\rm{//}}\,AC\] (2).

Từ (1) và (2) ta có \[IK \bot \left( {SBD} \right)\].

Câu 3

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^m}}}{{{y^n}}} = {\left( {\frac{x}{y}} \right)^{m - n}}\).          
B. \({x^m} \cdot {x^n} = {x^{m + n}}\).                                
C. \({\left( {xy} \right)^n} = {x^n} \cdot {y^n}\).                  
D. \({\left( {{x^n}} \right)^m} = {x^{n \cdot m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[8\].                    
B. \[ - 3\].                
C. \[3\]. 
D. \[ - 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP