Câu hỏi:

26/12/2025 56 Lưu

Chị Lan gửi vào ngân hàng \(30\,\,000\,\,000\) đồng với lãi suất \[0,5\% \]/tháng (sau mỗi tháng tiền lãi được nhập vào tiền gốc để tính lãi tháng sau). Hỏi sau \[1\] năm chị Hà nhận được bao nhiêu tiền, biết trong \[1\] năm đó chị Hà không rút tiền lần nào và lãi suất không thay đổi (làm tròn đến hàng nghìn).        

A. \(31\,\,851\,\,000\) đồng.                    
B. \(31\,\,235\,\,000\) đồng.         
C. \(31\,\,850\,\,000\) đồng.                    
D. \(31\,\,200\,\,000\) đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Sau 1 năm, chị Hà nhận được số tiền cả gốc lẫn lãi là

\(T = 30\,\,000\,\,000{\left( {1 + 0,5\% } \right)^{12}} \approx 31\,\,850\,\,000\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = \frac{{{a^3}c}}{b}\).                 
B. \(x = \frac{{{a^3}}}{{bc}}\).   
C. \(x = \frac{{{a^3}c}}{{{b^2}}}\).                            
D. \(x = {a^3} - b + c\).

Lời giải

Đáp án đúng là: A

Ta có \(6{\log _4}a - 3{\log _2}\sqrt[3]{b} - {\log _{\frac{1}{2}}}c\)\( = 6{\log _{{2^2}}}a - 3{\log _2}{b^{\frac{1}{3}}} - {\log _{{2^{ - 1}}}}c\)

\( = 6.\frac{1}{2}{\log _2}a - 3.\frac{1}{3}{\log _2}b + {\log _2}c\)\( = 3{\log _2}a - {\log _2}b + {\log _2}c\)\( = \left( {{{\log }_2}{a^3} - {{\log }_2}b} \right) + {\log _2}c\)\( = {\log _2}\frac{{{a^3}c}}{b}\).

Suy ra \(x = \frac{{{a^3}c}}{b}\).

Lời giải

Theo dự kiến, cần 24 tháng để hoàn thành công trình. Vậy khối lượng công việc trên một tháng theo dự tính là \(\frac{1}{{24}}\) (công trình).

Khối lượng công việc của tháng thứ 2 là \({T_2} = \frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}} = \frac{1}{{24}}{\left( {1 + 0,04} \right)^1}\).

Khối lượng công việc của tháng thứ 3 là

\({T_3} = \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) + 0,04 \cdot \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) = \frac{1}{{24}}{\left( {1 + 0,04} \right)^2}\).

Như vậy, khối lượng công việc của tháng thứ \(n\)\({T_n} = \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}}\).

Ta có \(\frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^0} + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^1} + ... + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}} = 1\)

\( \Leftrightarrow \frac{1}{{24}} \cdot \frac{{1 - {{\left( {1 + 0,04} \right)}^n}}}{{1 - \left( {1 + 0,04} \right)}} = 1 \Leftrightarrow {\left( {1 + 0,04} \right)^n} = \frac{{49}}{{25}} \Leftrightarrow n = {\log _{1 + 0,04}}\frac{{49}}{{25}} \approx 17,2\).

Vậy công trình sẽ hoàn thành ở tháng thứ 18 từ khi khởi công.

Câu 3

A. \({a^{\frac{5}{6}}}\).                         
B. \({a^{\frac{7}{6}}}\).      
C. \({a^{\frac{4}{3}}}\).      
D. \({a^{\frac{6}{7}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \left[ { - 2; - 1} \right]\).                                                          
B. \(D = \left( { - \infty ; - 2} \right) \cup \left( { - 1; + \infty } \right)\).        
C. \(D = \left( { - 2; - 1} \right)\).                                                           
D. \(D = \left( { - \infty ; - 2} \right] \cup \left[ { - 1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP