Câu hỏi:

26/12/2025 32 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật và \(SA \bot \left( {ABCD} \right)\). Gọi \(E,F\) lần lượt là hình chiếu vuông góc của \(A\) lên \[SB,SD\] (như hình vẽ dưới).

Đáp án đúng là: D (ảnh 1)

Khẳng định nào sau đây là đúng?

A. \(SC \bot \left( {AFB} \right)\).        
B. \(SC \bot \left( {AEC} \right)\).             
C. \(SC \bot \left( {AED} \right)\).                          
D. \(SC \bot \left( {AEF} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(BC \bot AB\) (do \(ABCD\) là hình chữ nhật) và \(BC \bot SA\) (do \(SA \bot \left( {ABCD} \right)\)).

Do đó, \(BC \bot \left( {SAB} \right)\), suy ra \(BC \bot AE\). Mà \(AE \bot SB\) (gt).

Từ đó suy ra \(AE \bot \left( {SBC} \right)\), suy ra \(AE \bot SC\) (1).

Tương tự, ta chứng minh được \(CD \bot \left( {SAD} \right)\), suy ra \(CD \bot AF\). Mà \[AF \bot SD\] (gt).

Từ đó suy ra \(AF \bot \left( {SCD} \right)\), suy ra \(AF \bot SC\) (2).

Từ (1) và (2) suy ra \(SC \bot \left( {AEF} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = \frac{{{a^3}c}}{b}\).                 
B. \(x = \frac{{{a^3}}}{{bc}}\).   
C. \(x = \frac{{{a^3}c}}{{{b^2}}}\).                            
D. \(x = {a^3} - b + c\).

Lời giải

Đáp án đúng là: A

Ta có \(6{\log _4}a - 3{\log _2}\sqrt[3]{b} - {\log _{\frac{1}{2}}}c\)\( = 6{\log _{{2^2}}}a - 3{\log _2}{b^{\frac{1}{3}}} - {\log _{{2^{ - 1}}}}c\)

\( = 6.\frac{1}{2}{\log _2}a - 3.\frac{1}{3}{\log _2}b + {\log _2}c\)\( = 3{\log _2}a - {\log _2}b + {\log _2}c\)\( = \left( {{{\log }_2}{a^3} - {{\log }_2}b} \right) + {\log _2}c\)\( = {\log _2}\frac{{{a^3}c}}{b}\).

Suy ra \(x = \frac{{{a^3}c}}{b}\).

Lời giải

Theo dự kiến, cần 24 tháng để hoàn thành công trình. Vậy khối lượng công việc trên một tháng theo dự tính là \(\frac{1}{{24}}\) (công trình).

Khối lượng công việc của tháng thứ 2 là \({T_2} = \frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}} = \frac{1}{{24}}{\left( {1 + 0,04} \right)^1}\).

Khối lượng công việc của tháng thứ 3 là

\({T_3} = \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) + 0,04 \cdot \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) = \frac{1}{{24}}{\left( {1 + 0,04} \right)^2}\).

Như vậy, khối lượng công việc của tháng thứ \(n\)\({T_n} = \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}}\).

Ta có \(\frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^0} + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^1} + ... + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}} = 1\)

\( \Leftrightarrow \frac{1}{{24}} \cdot \frac{{1 - {{\left( {1 + 0,04} \right)}^n}}}{{1 - \left( {1 + 0,04} \right)}} = 1 \Leftrightarrow {\left( {1 + 0,04} \right)^n} = \frac{{49}}{{25}} \Leftrightarrow n = {\log _{1 + 0,04}}\frac{{49}}{{25}} \approx 17,2\).

Vậy công trình sẽ hoàn thành ở tháng thứ 18 từ khi khởi công.

Câu 3

A. \({a^{\frac{5}{6}}}\).                         
B. \({a^{\frac{7}{6}}}\).      
C. \({a^{\frac{4}{3}}}\).      
D. \({a^{\frac{6}{7}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \left[ { - 2; - 1} \right]\).                                                          
B. \(D = \left( { - \infty ; - 2} \right) \cup \left( { - 1; + \infty } \right)\).        
C. \(D = \left( { - 2; - 1} \right)\).                                                           
D. \(D = \left( { - \infty ; - 2} \right] \cup \left[ { - 1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP