Câu hỏi:

26/12/2025 27 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(SA = SC\). Khẳng định nào sau đây đúng?

A. Mặt phẳng \[\left( {SBD} \right)\] vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đáp án đúng là: A (ảnh 1)

Gọi \(O\) là tâm của hình thoi \(ABCD\).

\(SA = SC\) nên tam giác \(SAC\) cân tại \(S\), lại có \(SO\) là trung tuyến nên đồng thời là đường cao, do đó \(SO \bot AC\).

Lại có \(AC \bot BD\) (hai đường chéo của hình thoi \(ABCD\)).

Ta có \(\left\{ \begin{array}{l}AC \bot SO\\AC \bot BD\\SO,\,BD \subset \left( {SBD} \right)\end{array} \right. \Rightarrow AC \bot \left( {SBD} \right) \Rightarrow \left( {ABCD} \right) \bot \left( {SBD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = \frac{{{a^3}c}}{b}\).                 
B. \(x = \frac{{{a^3}}}{{bc}}\).   
C. \(x = \frac{{{a^3}c}}{{{b^2}}}\).                            
D. \(x = {a^3} - b + c\).

Lời giải

Đáp án đúng là: A

Ta có \(6{\log _4}a - 3{\log _2}\sqrt[3]{b} - {\log _{\frac{1}{2}}}c\)\( = 6{\log _{{2^2}}}a - 3{\log _2}{b^{\frac{1}{3}}} - {\log _{{2^{ - 1}}}}c\)

\( = 6.\frac{1}{2}{\log _2}a - 3.\frac{1}{3}{\log _2}b + {\log _2}c\)\( = 3{\log _2}a - {\log _2}b + {\log _2}c\)\( = \left( {{{\log }_2}{a^3} - {{\log }_2}b} \right) + {\log _2}c\)\( = {\log _2}\frac{{{a^3}c}}{b}\).

Suy ra \(x = \frac{{{a^3}c}}{b}\).

Lời giải

Theo dự kiến, cần 24 tháng để hoàn thành công trình. Vậy khối lượng công việc trên một tháng theo dự tính là \(\frac{1}{{24}}\) (công trình).

Khối lượng công việc của tháng thứ 2 là \({T_2} = \frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}} = \frac{1}{{24}}{\left( {1 + 0,04} \right)^1}\).

Khối lượng công việc của tháng thứ 3 là

\({T_3} = \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) + 0,04 \cdot \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) = \frac{1}{{24}}{\left( {1 + 0,04} \right)^2}\).

Như vậy, khối lượng công việc của tháng thứ \(n\)\({T_n} = \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}}\).

Ta có \(\frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^0} + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^1} + ... + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}} = 1\)

\( \Leftrightarrow \frac{1}{{24}} \cdot \frac{{1 - {{\left( {1 + 0,04} \right)}^n}}}{{1 - \left( {1 + 0,04} \right)}} = 1 \Leftrightarrow {\left( {1 + 0,04} \right)^n} = \frac{{49}}{{25}} \Leftrightarrow n = {\log _{1 + 0,04}}\frac{{49}}{{25}} \approx 17,2\).

Vậy công trình sẽ hoàn thành ở tháng thứ 18 từ khi khởi công.

Câu 3

A. \({a^{\frac{5}{6}}}\).                         
B. \({a^{\frac{7}{6}}}\).      
C. \({a^{\frac{4}{3}}}\).      
D. \({a^{\frac{6}{7}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \left[ { - 2; - 1} \right]\).                                                          
B. \(D = \left( { - \infty ; - 2} \right) \cup \left( { - 1; + \infty } \right)\).        
C. \(D = \left( { - 2; - 1} \right)\).                                                           
D. \(D = \left( { - \infty ; - 2} \right] \cup \left[ { - 1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP