Cho tứ diện \(ABCD\) có tam giác \(ABC\) cân tại \(A,\) tam giác \(BCD\) cân tại \(D.\) Gọi \(I\) là trung điểm của \(BC.\) Mặt phẳng \(\left( {AID} \right)\) vuông góc với mặt phẳng nào dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: D

Vì \(I\) là trung điểm của \(BC\) nên \(AI\) là đường trung tuyến trong tam giác \(ABC\) cân tại \(A,\) do đó \(AI\) đồng thời là đường cao nên suy ra \(AI \bot BC\).
Tương tự ta chứng minh được \(DI \bot BC\). Từ đó suy ra \(BC \bot \left( {ADI} \right)\).
Vậy \(\left( {BCD} \right) \bot \left( {ADI} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) (0,5 điểm)
Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)
\( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)
b) (0,5 điểm)
Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.
Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).
Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.
…
Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.
Vậy giá bán xe năm thứ 8 (năm 2030) là:
\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.
Câu 2
Lời giải
Đáp án đúng là: A
Với các số dương \[a \ne 1\] và các số thực \[\alpha \], \[\beta \], ta có:
+) \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]; +) \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\,\,\left( {a \ne 0} \right)\]; +) \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.