Câu hỏi:

26/12/2025 4 Lưu

Cho tứ diện \(ABCD\) có tam giác \(ABC\) cân tại \(A,\) tam giác \(BCD\) cân tại \(D.\) Gọi \(I\) là trung điểm của \(BC.\) Mặt phẳng \(\left( {AID} \right)\) vuông góc với mặt phẳng nào dưới đây?          

A. \(\left( {ACD} \right)\).                     
B. \(\left( {IAD} \right)\).                          
C. \(\left( {ABD} \right)\).                          
D. \(\left( {BCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án đúng là: D (ảnh 1)

\(I\) là trung điểm của \(BC\) nên \(AI\) là đường trung tuyến trong tam giác \(ABC\) cân tại \(A,\) do đó \(AI\) đồng thời là đường cao nên suy ra \(AI \bot BC\).

Tương tự ta chứng minh được \(DI \bot BC\). Từ đó suy ra \(BC \bot \left( {ADI} \right)\).

Vậy \(\left( {BCD} \right) \bot \left( {ADI} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) (0,5 điểm)

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

b) (0,5 điểm)

Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.

Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).

Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.

Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.

Vậy giá bán xe năm thứ 8 (năm 2030) là:

\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.

Câu 2

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Đáp án đúng là: A

Với các số dương \[a \ne 1\] và các số thực \[\alpha \], \[\beta \], ta có:

+) \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\];         +) \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\,\,\left( {a \ne 0} \right)\];                 +) \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{{x^m}}}{{{y^n}}} = {\left( {\frac{x}{y}} \right)^{m - n}}\).          
B. \({x^m} \cdot {x^n} = {x^{m + n}}\).                                
C. \({\left( {xy} \right)^n} = {x^n} \cdot {y^n}\).                  
D. \({\left( {{x^n}} \right)^m} = {x^{n \cdot m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[8\].                    
B. \[ - 3\].                
C. \[3\]. 
D. \[ - 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP