Câu hỏi:

26/12/2025 4 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B,SA\) vuông góc với đáy và \(SA = AB\) (tham khảo hình dưới).

Đáp án đúng là: D (ảnh 1)

Góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng

A. \(60^\circ \).       
B. \(30^\circ \).       
C. \(90^\circ \).     
D. \(45^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Ta cũng có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SB \subset \left( {SBC} \right),\,\,SB \bot BC\\AB \subset \left( {ABC} \right),\,\,AB \bot BC\end{array} \right.\). Suy ra \(\left( {\left( {SBC} \right),\,\left( {ABC} \right)} \right) = \left( {SB,\,AB} \right) = \widehat {SBA}\).

Ta có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AB\), do đó tam giác \(SAB\) vuông tại \(A\).

Lại có \(SA = AB\) (gt), từ đó suy ra tam giác \(SAB\) vuông cân tại \(A\). Do đó \(\widehat {SBA} = 45^\circ \).

Vậy góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \(45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) (0,5 điểm)

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

b) (0,5 điểm)

Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.

Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).

Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.

Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.

Vậy giá bán xe năm thứ 8 (năm 2030) là:

\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.

Câu 2

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Đáp án đúng là: A

Với các số dương \[a \ne 1\] và các số thực \[\alpha \], \[\beta \], ta có:

+) \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\];         +) \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\,\,\left( {a \ne 0} \right)\];                 +) \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[8\].                    
B. \[ - 3\].                
C. \[3\]. 
D. \[ - 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{{x^m}}}{{{y^n}}} = {\left( {\frac{x}{y}} \right)^{m - n}}\).          
B. \({x^m} \cdot {x^n} = {x^{m + n}}\).                                
C. \({\left( {xy} \right)^n} = {x^n} \cdot {y^n}\).                  
D. \({\left( {{x^n}} \right)^m} = {x^{n \cdot m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP