Câu hỏi:

26/12/2025 66 Lưu

III. Hướng dẫn giải tự luận

(1,0 điểm)

a) Tính giá trị của biểu thức \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\).

b) Năm \(2023\), một hãng xe ô tô niêm yết giá bán loại xe \(X\)\(750\,\,000\,\,000\) đồng và dự định trong \(10\) năm tiếp theo, mỗi năm giảm \(1,8\% \) giá bán của năm liền trước. Theo dự định đó, năm \(2030\) hãng xe ô tô niêm yết giá bán xe \(X\) là bao nhiêu (kết quả làm tròn đến hàng nghìn)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) (0,5 điểm)

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

b) (0,5 điểm)

Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.

Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).

Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.

Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.

Vậy giá bán xe năm thứ 8 (năm 2030) là:

\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = \frac{{{a^3}c}}{b}\).                 
B. \(x = \frac{{{a^3}}}{{bc}}\).   
C. \(x = \frac{{{a^3}c}}{{{b^2}}}\).                            
D. \(x = {a^3} - b + c\).

Lời giải

Đáp án đúng là: A

Ta có \(6{\log _4}a - 3{\log _2}\sqrt[3]{b} - {\log _{\frac{1}{2}}}c\)\( = 6{\log _{{2^2}}}a - 3{\log _2}{b^{\frac{1}{3}}} - {\log _{{2^{ - 1}}}}c\)

\( = 6.\frac{1}{2}{\log _2}a - 3.\frac{1}{3}{\log _2}b + {\log _2}c\)\( = 3{\log _2}a - {\log _2}b + {\log _2}c\)\( = \left( {{{\log }_2}{a^3} - {{\log }_2}b} \right) + {\log _2}c\)\( = {\log _2}\frac{{{a^3}c}}{b}\).

Suy ra \(x = \frac{{{a^3}c}}{b}\).

Lời giải

Theo dự kiến, cần 24 tháng để hoàn thành công trình. Vậy khối lượng công việc trên một tháng theo dự tính là \(\frac{1}{{24}}\) (công trình).

Khối lượng công việc của tháng thứ 2 là \({T_2} = \frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}} = \frac{1}{{24}}{\left( {1 + 0,04} \right)^1}\).

Khối lượng công việc của tháng thứ 3 là

\({T_3} = \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) + 0,04 \cdot \left( {\frac{1}{{24}} + 0,04 \cdot \frac{1}{{24}}} \right) = \frac{1}{{24}}{\left( {1 + 0,04} \right)^2}\).

Như vậy, khối lượng công việc của tháng thứ \(n\)\({T_n} = \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}}\).

Ta có \(\frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^0} + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^1} + ... + \frac{1}{{24}} \cdot {\left( {1 + 0,04} \right)^{n - 1}} = 1\)

\( \Leftrightarrow \frac{1}{{24}} \cdot \frac{{1 - {{\left( {1 + 0,04} \right)}^n}}}{{1 - \left( {1 + 0,04} \right)}} = 1 \Leftrightarrow {\left( {1 + 0,04} \right)^n} = \frac{{49}}{{25}} \Leftrightarrow n = {\log _{1 + 0,04}}\frac{{49}}{{25}} \approx 17,2\).

Vậy công trình sẽ hoàn thành ở tháng thứ 18 từ khi khởi công.

Câu 3

A. \({a^{\frac{5}{6}}}\).                         
B. \({a^{\frac{7}{6}}}\).      
C. \({a^{\frac{4}{3}}}\).      
D. \({a^{\frac{6}{7}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]. 
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP