III. Hướng dẫn giải tự luận
(1,0 điểm)
a) Tính giá trị của biểu thức \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\).
b) Năm \(2023\), một hãng xe ô tô niêm yết giá bán loại xe \(X\) là \(750\,\,000\,\,000\) đồng và dự định trong \(10\) năm tiếp theo, mỗi năm giảm \(1,8\% \) giá bán của năm liền trước. Theo dự định đó, năm \(2030\) hãng xe ô tô niêm yết giá bán xe \(X\) là bao nhiêu (kết quả làm tròn đến hàng nghìn)?
III. Hướng dẫn giải tự luận
(1,0 điểm)
a) Tính giá trị của biểu thức \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\).
b) Năm \(2023\), một hãng xe ô tô niêm yết giá bán loại xe \(X\) là \(750\,\,000\,\,000\) đồng và dự định trong \(10\) năm tiếp theo, mỗi năm giảm \(1,8\% \) giá bán của năm liền trước. Theo dự định đó, năm \(2030\) hãng xe ô tô niêm yết giá bán xe \(X\) là bao nhiêu (kết quả làm tròn đến hàng nghìn)?
Quảng cáo
Trả lời:
a) (0,5 điểm)
Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)
\( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)
b) (0,5 điểm)
Giá bán xe năm đầu tiên: \[{A_1} = 750\,\,000\,\,000\] đồng.
Giá bán xe năm thứ hai: \({A_2} = {A_1} - {A_1} \cdot r = {A_1}\left( {1 - r} \right)\) đồng, với \(r = 1,8\% \).
Giá bán xe năm thứ ba: \({A_3} = {A_2} - {A_2}r = {A_2}\left( {1 - r} \right) = {A_1}{\left( {1 - r} \right)^2}\) đồng.
…
Giá bán xe năm thứ \(n\): \({A_n} = {A_1}{\left( {1 - r} \right)^{n - 1}}\) đồng.
Vậy giá bán xe năm thứ 8 (năm 2030) là:
\({A_6} = {A_1}{\left( {1 - r} \right)^7} = 750\,\,000\,\,000{\left( {1 - 1,8\% } \right)^7} \approx 660\,\,453\,\,000\) đồng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Với các số dương \[a \ne 1\] và các số thực \[\alpha \], \[\beta \], ta có:
+) \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\]; +) \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\,\,\left( {a \ne 0} \right)\]; +) \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\].
Lời giải
![(1,0 điểm) Cho hình chóp \[S.ABCD\] có đáy là hình vuông và \[SA = SC\], \[SB = SD\]. Gọi \[I,K\] là trung điểm của \[AB,BC\]. Chứng minh \[IK \bot \left( {SBD} \right)\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766717999.png)
Gọi \(O\) là tâm của đáy \(ABCD\).
Tam giác \[SAC\] cân tại \[S\] (do \[SA = SC\]) nên \[SO \bot AC\] hay \[AC \bot SO\].
Đáy là hình vuông nên có \[AC \bot BD\]. Do đó \[AC \bot \left( {SBD} \right)\] (1).
Ta có \[IK\] là đường trung bình của tam giác \[ABC\] nên \[IK\,{\rm{//}}\,AC\] (2).
Từ (1) và (2) ta có \[IK \bot \left( {SBD} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.