Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) và các cạnh bên đều bằng \(a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của cạnh \(AD,\,\,SD\). Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: A

Ta có \(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}\), \(S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}\).
Do đó \(A{C^2} = S{A^2} + S{C^2}\). Từ đó suy ra tam giác \(SAC\) vuông tại \(S\) hay \(SA \bot SC\). (1)
Vì \(M\) và \(N\) lần lượt là trung điểm của cạnh \(AD,\,\,SD\) nên \(MN\) là đường trung bình của tam giác \(SAD\), do đó \(MN{\rm{//}}SA\). (2)
Từ (1) và (2) suy ra \(MN \bot SC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B

+ Vì \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\] nên \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {ABCD} \right).\] Vậy đáp án A đúng.
+ Vì \(SA \subset \left( {SAB} \right)\) nên đáp án B sai.
+ Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\), do đó \[B\] là chiếu vuông góc của \[C\] lên \[\left( {SAB} \right).\] Vậy đáp án C đúng.
+ Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\), do đó \[D\] là chiếu vuông góc của \[C\] lên \[\left( {SAD} \right).\] Vậy đáp án D đúng.
Câu 2
Lời giải
Đáp án đúng là: C
Ta có \[{2^{x\, - \,3}}\, > \,8 \Leftrightarrow {2^{x - 3}} > {2^3} \Leftrightarrow x - 3 > 3 \Leftrightarrow x > 6\].
Vậy tập nghiệm của bất phương trình \[{2^{x\, - \,3}}\, > \,8\] là \[\left( {6;\, + \infty } \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.