Câu hỏi:

16/01/2026 57 Lưu

Có bao nhiêu số tự nhiên có 2018 chữ số sao cho trong mỗi số tổng các chữ số bằng 5?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(5 = 5 + 0 = 4 + 1 = 3 + 2 = 2 + 2 + 1 = 3 + 1 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1\) nên ta có các trường hợp sau:

+) Trường hợp 1: Số tự nhiên có một chữ số 5 đứng đầu và 2017 chữ số 0 đứng sau: Có 1 số.

+) Trường hợp 2: Số tự nhiên có một chữ số 4, một chữ số 1 và 2016 chữ số 0.

- Khả năng 1: Nếu chữ số 4 đứng đầu thì chữ số 1 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

- Khả năng 2: Nếu chữ số 1 đứng đầu thì chữ số 4 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

+) Trường hợp 3: Số tự nhiên có một chữ số 3, một chữ số 2 và 2016 chữ số 0.

- Khả năng 1: Nếu chữ số 3 đứng đầu thì chữ số 2 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

- Khả năng 2: Nếu chữ số 2 đứng đầu thì chữ số 3 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

+) Trường hợp 4: Số tự nhiên có hai chữ số 2, một chữ số 1 và 2015 chữ số 0.

- Khả năng 1: Nếu chữ số 2 đứng đầu thì chữ số 1 và chữ số 2 còn lại đứng ở hai trong 2017 vị trí còn lại nên ta có \(A_{2017}^2\) số.

- Khả năng 2: Nếu chữ số 1 đứng đầu thì hai chữ số 2 đứng ở hai trong \(2017\) vị trí còn lại nên ta có \(C_{2017}^2\) số.

+) Trường hợp 5: Số tự nhiên có 2 chữ số \(1\), một chữ số 3 và 2015 chữ số 0 thì tương tự như trường hợp 4 ta có \(A_{2017}^2 + C_{2017}^2\) số.

+) Trường hợp 6: Số tự nhiên có một chữ số 2, ba chữ số 1 và 2014 chữ số 0.

- Khả năng 1: Nếu chữ số 2 đứng đầu thì ba chữ số 1 đứng ở ba trong 2017 vị trí còn lại nên ta có \(C_{2017}^3\)số.

- Khả năng 2: Nếu chữ số 1 đứng đầu và chữ số 2 đứng ở vị trí mà không có chữ số 1 nào khác đứng trước nó thì hai chữ số 1 còn lại đứng ở trong 2016 vị trí còn lại nên ta có \(C_{2016}^2\) số.

- Khả năng 3: Nếu chữ số 1 đứng đầu và chữ số 2 đứng ở vị trí mà đứng trước nó có hai chữ số 1 thì hai chữ số 1 và 2 còn lại đứng ở trong 2016 vị trí còn lại nên ta có \(A_{2016}^2\) số.

+) Trường hợp 7: Số tự nhiên có năm chữ số 1 và \(2013\) chữ số 0, vì chữ số 1 đứng đầu nên bốn chữ số 1 còn lại đứng ở bốn trong 2017 vị trí còn lại nên ta có \(C_{2017}^4\) số.

Áp dụng quy tắc cộng ta có \(1 + 4C_{2017}^1 + 2\left( {C_{2017}^2 + A_{2017}^2} \right) + \left( {C_{2017}^3 + A_{2016}^2 + C_{2016}^2} \right) + C_{2017}^4\) số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 216;                      
B. 284;                       
C. 278;                       
D. 254.

Lời giải

Đáp án đúng là: A

Ta xét khai triển \({\left( {\frac{3}{x} + 2x} \right)^4}\) (với \(x \ne 0\)), ta có:

\({\left( {\frac{3}{x} + 2x} \right)^4} = C_4^0.{\left( {\frac{3}{x}} \right)^4} + C_4^1.{\left( {\frac{3}{x}} \right)^3}.\left( {2x} \right) + C_4^2.{\left( {\frac{3}{x}} \right)^2}.{\left( {2x} \right)^2} + C_4^3.\left( {\frac{3}{x}} \right).{\left( {2x} \right)^3} + C_4^4.{\left( {2x} \right)^4}\)

\( = \frac{{81}}{{{x^4}}} + \frac{{216}}{{{x^2}}} + 216 + 96{x^2} + 16{x^4}\).

Vậy số hạng không chứa \[x\] trong khai triển là 216.

Câu 2

A. 6;                          
B. 3;                              
C. 5;                           
D. 1.

Lời giải

Đáp án đúng là: C

Ta có: \[{\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\].

Do vậy có tất cả 5 số hạng.

Câu 3

A. \(275\);                  
B. \(462\);                      
C. \(455\);                  
D. \(425\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 14;\,\, - \frac{{41}}{2}} \right)\); 
B. \(\left( {14;\,\frac{{41}}{2}} \right)\);  
C. \(\left( {\frac{{41}}{2};\,\,14} \right)\);            
D. \(\left( {14;\,\, - \frac{{41}}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 2;\,\, - 2} \right)\);                        
B. \(\left( {2;\,\,2} \right)\);  
C. \(\left( {6;\,\,0} \right)\);                        
D. \(\left( {2;\, - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];

D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left| {\overrightarrow {MN} } \right| = \sqrt {13} \);                 
B. \(\left| {\overrightarrow {MN} } \right| = 5\);            
C. \(\left| {\overrightarrow {MN} } \right| = \sqrt {29} \);               
D. \(\left| {\overrightarrow {MN} } \right| = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP