Gieo hai đồng xu cân đối và đồng chất một lần. Tính xác suất sao cho hai đồng xu xuất hiện mặt giống nhau.
Gieo hai đồng xu cân đối và đồng chất một lần. Tính xác suất sao cho hai đồng xu xuất hiện mặt giống nhau.
Quảng cáo
Trả lời:
Quy ước: S: Là đồng xu xuất hiện mặt sấp.
N: Là đồng xu xuất hiện mặt ngửa.
Do hai đồng xu là hai cá thể độc lập nên SN và NS là hai trường hợp khác nhau
⇒ Không gian mẫu của phép thử là \[\Omega = \left\{ {SS;\,SN;NS;NN} \right\}\].
⇒ Số phần tử của không gian mẫu là: \[n\left( \Omega \right) = 4.\]
Gọi A là biến cố: “Hai đồng xu xuất hiện mặt giống nhau” ⇒ \[A = \left\{ {SS;NN} \right\}\].
⇒ Số phần tử của biến cố A là: \[n\left( A \right) = 2\].
Vậy xác suất của biến cố A là: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì IA, IC là tiếp tuyến của \[\left( O \right)\] với tiếp điểm lần lượt là A, C nên \[\widehat {IAO} = \widehat {ICO} = 90^\circ .\]
Xét tứ giác OAIC ta có \[\widehat {IAO} + \widehat {ICO} = 90^\circ + 90^\circ = 180^\circ .\]
Mà hai góc này ở vị trí đối diện nên tứ giác OAIC nội tiếp (1)
b) Xét \[\Delta \,ICD\] và \[\Delta \,IBC\]ta có
\[\widehat {{B_1}} = \widehat {{C_1}}\] (góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung cùng chắn cung CD).
\[\widehat {{I_1}}\] chung
Nên \[\Delta \,IBC\](g.g)
Suy ra \[\frac{{IC}}{{IB}} = \frac{{ID}}{{IC}}\]hay \[I{C^2} = IB\,\,.\,\,ID \Rightarrow \] điều phải chứng minh.
c) Vì M là trung điểm của BD nên \[OM \bot BD\] (Liên hệ giữa đường kính và dây cung) (2)
Suy ra \[\widehat {OMI} = 90^\circ \]
Ta có \[\widehat {OMI} + \widehat {OCI} = 90^\circ + 90^\circ = 180^\circ .\]
Mà hai góc này ở vị tí đối diện nên tứ giác OMIC nội tiếp (3)
Từ (1) và (3) suy ra năm điểm O, M, A, I, C cùng thuộc một đường tròn.
Suy ra tứ giác AMCI nội tiếp.
Suy ra \[\widehat {{I_2}} = \widehat {{C_2}}\] (Hai góc cùng nhìn cạnh AM)
Ta có \[\widehat {{C_2}} = \widehat {{A_2}}\] (Góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AE).
Suy ra \[\widehat {{I_2}} = \widehat {{A_2}}\] mà hai góc này ở vị trí đồng vị nên \[AE\,{\rm{//}}\,BD & \left( 4 \right).\]
Từ (2) và (4) suy ra \[OM \bot AE \Rightarrow \]điều phải chứng minh.
Lời giải
a) Với điều kiện \[x \ge 0,x \ne 1\]
\[\begin{array}{c}P = \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}} + \frac{{2\sqrt x }}{{x - 1}} = \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}} + \frac{{2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \frac{{\sqrt x - 1 - \left( {\sqrt x + 1} \right) + 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{2}{{\sqrt x + 1}}\end{array}\]
Vậy \[x \ge 0,x \ne 1\] thì \[P = \frac{2}{{\sqrt x + 1}}.\]
b) Với điều kiện \[x \ge 0,x \ne 1\]
\[\begin{array}{l}P = \frac{1}{3} & \Leftrightarrow \frac{2}{{\sqrt x + 1}} = \frac{1}{3}\\ & \Leftrightarrow \sqrt x + 1 = 6\\ & \Leftrightarrow \sqrt x & \,\,\,\,\,\, = 5\\ & \Leftrightarrow \,\,\,x & \,\,\,\,\,\, = 25 & \left( {{\rm{tmdk}}} \right)\end{array}\]
Vậy \[x = 25\] thì \[P = \frac{1}{3}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.