Mỗi ngày bác An đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: \(km\) ) của bác An trong \(20\)ngày được thống kê lại ở bảng sau:

Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?
Mỗi ngày bác An đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: \(km\) ) của bác An trong \(20\)ngày được thống kê lại ở bảng sau:

Quảng cáo
Trả lời:
Chọn D
Quãng đường chạy trung bình
\[\overline x = \frac{{2,85 \times 3 + 3,15 \times 6 + 3,45 \times 5 + 3,75 \times 4 + 4,05 \times 2}}{{20}} = 3,39\].
Phương sai của mẫu số liệu là
\({s^2} = \frac{1}{{20}}\left[ {2,{{85}^2} \times 3 + 3,{{15}^2} \times 6 + 3,{{45}^2} \times 5 + 3,{{75}^2} \times 4 + 4,{{05}^2} \times 2} \right] - 3,{39^2} = 0,1314\)
Độ lệch chuẩn \(s = \sqrt {{s^2}} \approx 0,36\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 101
Ta có: \(f'\left( x \right) = - \frac{3}{{10}}{x^2} + \frac{9}{5}x - \frac{3}{2} \Rightarrow f'\left( a \right) = - \frac{3}{{10}}{a^2} + \frac{9}{5}a - \frac{3}{2}\)
Để khoảng cách từ trạm này đến bờ con sông là ngắn nhất thì tiếp tuyến với đồ thị hàm số tại \(M\) song song với đường thẳng \(d \Rightarrow f'\left( a \right) = - \frac{3}{2} \Leftrightarrow \left[ \begin{array}{l}a = 0\,\,\,(ktm)\\a = 6\end{array} \right. \Rightarrow M\left( {6;\frac{{37}}{5}} \right)\)
Suy ra: \[d\left( {M;d} \right) = \frac{{\left| {1,5.6 + \frac{{37}}{5} - 18} \right|}}{{\sqrt {1,{5^2} + 1} }} = \frac{{16\sqrt {13} }}{{65}}\]
Vậy tổng chi phí là \(4.6 + 5.\frac{{37}}{5} + \frac{{16\sqrt {13} }}{{65}}.100.0.45 = \frac{{144\sqrt {13} }}{{13}} + 61 \approx 101\) (triệu đồng).
Lời giải
Đáp án: 23.4.
Hàm lợi nhuận là:
\(L\left( x \right) = 21Q\left( x \right) - 13Q\left( x \right) - x\)\( = 8Q\left( x \right) - x\)\( = 10000 + 2028\ln \left( {3 + x} \right) - x\) (triệu đồng)
\(L'\left( x \right) = \frac{{2028}}{{3 + x}} - 1 = \frac{{2025 - x}}{{3 + x}}\);
\(L'\left( x \right) = 0 \Leftrightarrow x = 2025\)
\(L''\left( x \right) = - \frac{{2028}}{{{{\left( {3 + x} \right)}^2}}}\); \(L''\left( {2025} \right) < 0\) nên hàm số đạt cực đại tại \(x = 2025\)
\({L_{\max }} = L\left( {2025} \right) = 23417,825\) (triệu đồng) \( \Rightarrow p = 23,4\) (tỷ đồng)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



