Câu hỏi:

30/12/2025 38 Lưu

Lớp 11A có 40 học sinh, trong đó có 16 học sinh giỏi Toán, 20 học sinh giỏi Văn và 12 học sinh giỏi cả hai môn đó. Chọn ngẫu nhiên một học sinh của lớp. Xác suất để chọn được học sinh giỏi một trong hai môn Toán hoặc Văn là

A. \[0,3.\]   
B. \[0,1\].
C. \[0,5\]. 
D. \[0,6\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Gọi biến cố A: “Học sinh đó giỏi Toán”.

Biến cố B: “Học sinh đó giỏi Văn”.

Biến cố AB: “Học sinh đó giỏi cả Văn và Toán”.

Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó giỏi một trong hai môn Toán hoặc Văn”.

Ta có \(P\left( A \right) = \frac{{16}}{{40}} = \frac{2}{5};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{12}}{{40}} = \frac{3}{{10}}\).

Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{2}{5} + \frac{1}{2} - \frac{3}{{10}} = \frac{6}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = 2.\]

Câu 2

A. \[S = \left\{ {1;3} \right\}\]. 
B. \[S = \left\{ 1 \right\}\].  
C. \[S = \left\{ 2 \right\}\]. 
D. \[S = \left\{ { - 1;3} \right\}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Điều kiện: \(x > 1\).

\[{\log _2}x + {\log _2}(x - 1) = 1\]\[ \Leftrightarrow {\log _2}\left[ {x(x - 1)} \right] = 1\]\[ \Leftrightarrow x\left( {x - 1} \right) = 2\]\[ \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 1\end{array} \right.\].

Kết hợp điều kiện, ta có \(x = 2\) là nghiệm của phương trình.

Câu 4

A. \[x = 1\].  
B. \[x = 2\].
C. \[x = 3\]. 
D. \[x = 4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}\]. 
B. \[2\]. 
C. \[1\]. 
D. \[ - 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x.\)  
B. \(0\) 
C. \(1\).
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP