Câu hỏi:

30/12/2025 8 Lưu

Sau một năm đi làm, bạn Nam đã tiết kiệm được \(65\) triệu đồng. Nam gởi tiết kiệm với lãi suất \(6,5\% \) một năm. Giả sử lãi suất không thay đổi. Hỏi sau bao nhiêu năm bạn Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.

Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.

Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).

Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi biến cố A: “Học sinh đó giỏi Toán”.

Biến cố B: “Học sinh đó giỏi Văn”.

Biến cố AB: “Học sinh đó giỏi cả Văn và Toán”.

Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó giỏi một trong hai môn Toán hoặc Văn”.

Ta có \(P\left( A \right) = \frac{{16}}{{40}} = \frac{2}{5};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{12}}{{40}} = \frac{3}{{10}}\).

Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{2}{5} + \frac{1}{2} - \frac{3}{{10}} = \frac{6}{{10}}\).

Lời giải

Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 45o. Tính thể tích khối chóp S.ABCD. (ảnh 1)

Gọi \(H,M\) lần lượt là trung điểm của \(AD,BC\).

Vì \(\Delta SAD\) đều nên \(SH \bot AD\) mà \(\left( {SAD} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BC.\)

Lại có \(BC \bot HM \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).

Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) là \(\widehat {SMH} = 45^\circ \).

Vì \(SH\) là đường cao của \(\Delta SAD\) đều cạnh \(2a\) nên \(SH = a\sqrt 3 \).

Xét \(\Delta SHM\), có \(HM = \frac{{SH}}{{\tan 45^\circ }} = \frac{{a\sqrt 3 }}{1} = a\sqrt 3 \).

Do đó \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}.a\sqrt 3 .2a.a\sqrt 3  = 2{a^3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[P(A \cup B) = P(A) + P(B).\]      
B. \[P(A \cup B) = P(A) - P(B).\]       
C. \[P(A \cup B) = P(A).P(B).\]         
D. \[P(A \cup B) = P(B) - P(A).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x.\)  
B. \(0\) 
C. \(1\).
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP