Câu hỏi:

30/12/2025 2 Lưu

Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lí, 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 em học sinh \(A,\,B,\,C,\,D,\,E\) mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng cho các em học sinh sao cho sau khi tặng xong, mỗi một trong ba loại sách trên đều còn ít nhất một cuốn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta thấy với bài toán này nếu làm trực tiếp thì sẽ khá khó, nên ta sẽ làm theo cách gián tiếp. Tìm bài toán đối đó là tìm số cách sao cho sau khi tặng sách xong có một môn hết sách.

+ TH1: Môn Toán hết sách:

Số cách chọn 4 cuốn sách Toán là 1 cách.

Số cách chọn 1 cuốn trong 6 cuốn còn lại là 6 cách.

Vậy có 6 cách chọn sách.

Số cách tặng 5 cuốn sách đó cho 5 em học sinh là \(A_5^5 = 120\) cách.

Vậy có \(6.120 = 720\) cách.

+ TH2: Môn Lí hết sách:

Số cách chọn 3 cuốn sách Lí là 1 cách.

Số cách chọn 2 cuốn trong 7 cuốn còn lại là \(C_7^2\) cách.

Vậy có 21 cách chọn sách.

Số cách tặng 5 cuốn sách đó cho 5 em học sinh là \(A_5^5 = 120\) cách.

Vậy có \(21.120 = 2\,\,520\) cách.

+ TH3: Môn Hóa hết sách: Tương tự trường hợp 2 thì có 2 520 cách.

Số cách chọn 5 cuốn bất kì trong 10 cuốn và tặng cho 5 em là \(C_{10}^5.A_5^5 = 30\,240\) cách.

Vậy số cách chọn sao cho sau khi tặng xong, mỗi loại sách trên đều còn lại ít nhất một cuốn là: \(30\,240 - 720 - 2\,520 - 2\,520 = 24\,480\) cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\);

B. Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( {3; - 1} \right)\);

C. Điểm đối xứng với \(M\)qua trục hoành là \(N\left( {1;3} \right)\);

D. Hình chiếu vuông góc của \(M\) trên trục tung là \(K\left( {0; - 3} \right)\).

Lời giải

Đáp án đúng là: B

Trong mặt phẳng tọa độ \[Oxy\]:

+ Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\). Đáp án A đúng.

+ Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( { - 1;\,3} \right)\). Đáp án B sai.

+ Điểm đối xứng với \(M\) qua trục hoành là \(N\left( {1;3} \right)\). Đáp án C đúng.

+ Hình chiếu vuông góc của \(M\) trên trục tung là \(K\left( {0; - 3} \right)\). Đáp án D đúng.

Lời giải

Đáp án đúng là: C

Số cách lập danh sách gồm 5 cầu thủ đá 5 quả 11 mét là số các chỉnh hợp chập 5 của 11 phần tử. Vậy  có \(A_{11}^5 = 55\,440\).

Câu 3

A. 60;                        
B. 10;                            
C. 15;                         
D. 720.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho 8 bạn học sinh \(A,\,B,\,C,\,D,\,E,\,F,\,G,\,H\). Hỏi có bao nhiêu cách xếp 8 bạn đó ngồi xung quanh một bàn tròn có 8 ghế?

A. 40 320;                  
B. 5 040;                        
C. 720;                       
D. 40 319.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{n!}}{{k! + \left( {n - k} \right)!}}\]; 
B. \[\frac{{n!}}{{\left( {n - k} \right)!}}\];    
C. \[\frac{{n!}}{{k!}}\];                                
D. \[\frac{{n!}}{{k!\left( {n - k} \right)!}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP