Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng cạnh OB cố định thì được một hình nón có thể tích bằng \[800\pi c{m^3}\] . Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng \[1920\pi c{m^3}\]. Tính OB và OC
Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng cạnh OB cố định thì được một hình nón có thể tích bằng \[800\pi c{m^3}\] . Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng \[1920\pi c{m^3}\]. Tính OB và OC
Quảng cáo
Trả lời:

\[{V_1} = \frac{1}{3}\pi .O{C^2}.OB = 800\pi \]
Khi quay tam giác \[OBC\] một vòng cạnh \[OC\] cố định thì
\[{V_2} = \frac{1}{3}\pi .O{B^2}.OC = 1920\pi \]
Ta có: \[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{1}{3}\pi .O{C^2}.OB}}{{\frac{1}{3}\pi .O{B^2}.OC}} = \frac{{800\pi }}{{1920\pi }} \Leftrightarrow \frac{{OC}}{{OB}} = \frac{5}{{12}} \Rightarrow OC = \frac{5}{{12}}OB\]
Suy ra: \[{V_1} = \frac{1}{3}\pi .{\left( {\frac{5}{{12}}.OB} \right)^2}.OB = 800\pi \Rightarrow \frac{{25}}{{144}}.O{B^2} = 2400 \Rightarrow OB = 24(cm)\]
Do đó: \[OC = \frac{5}{{12}}.OB = \frac{5}{{12}}.24 = 10\left( {cm} \right)\]
Vậy độ dài của \[OB\] và \[OC\] lần lượt là \[24\left( {cm} \right)\] và \[10\left( {cm} \right)\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Biểu thức\[A = \sqrt {x - 1} \] có nghĩa khi \[x - 1 \ge 0 \Leftrightarrow x \ge 1\]
b)\[\begin{array}{l}B = \sqrt 9 - \sqrt 4 + \sqrt {16} \\ \Leftrightarrow B = \sqrt {{3^2}} - \sqrt {{2^2}} + \sqrt {{4^2}} \\ \Leftrightarrow B = 3 - 2 + 4\\ \Leftrightarrow B = 5\end{array}\]
Vậy \[B = 5\]
c)\[\begin{array}{l}C = \frac{x}{{x - 4}} + \frac{1}{{\sqrt x + 2}} - \frac{1}{{\sqrt x - 2}}\\ \Leftrightarrow C = \frac{x}{{x - 4}} + \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\ \Leftrightarrow C = \frac{{x + \sqrt x - 2 - \sqrt x - 2}}{{x - 4}}\\ \Leftrightarrow C = \frac{{x - 4}}{{x - 4}} = 1\end{array}\]
Vậy \[C = 1\]
Lời giải
a)Ta có \[\left\{ {\begin{array}{*{20}{c}}{2x + y = 5}\\{x - y = 1\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x = 6\,\,\,\,\,}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 1}\end{array}} \right.\]
Vậy hệ phương trình có nghiệm \[(x;y) = (2;1)\]
b)Đường thẳng \[\left( d \right)\] cắt trục tung tại điểm có tung độ bằng 2, suy ra:
\[x = 0;y = 2\]
Thay \[x = 0;y = 2\] vào \[\left( d \right)\], ta được \[2 = 0 - m \Leftrightarrow m = - 2\]
Vậy \[m = - 2\] thì đường thẳng \[\left( d \right)\] cắt trục tung tại điểm có tung độ bằng 2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.