Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Thừa Thiên Huế có đáp án
4 người thi tuần này 4.6 4 lượt thi 6 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Biểu thức\[A = \sqrt {x - 1} \] có nghĩa khi \[x - 1 \ge 0 \Leftrightarrow x \ge 1\]
b)\[\begin{array}{l}B = \sqrt 9 - \sqrt 4 + \sqrt {16} \\ \Leftrightarrow B = \sqrt {{3^2}} - \sqrt {{2^2}} + \sqrt {{4^2}} \\ \Leftrightarrow B = 3 - 2 + 4\\ \Leftrightarrow B = 5\end{array}\]
Vậy \[B = 5\]
c)\[\begin{array}{l}C = \frac{x}{{x - 4}} + \frac{1}{{\sqrt x + 2}} - \frac{1}{{\sqrt x - 2}}\\ \Leftrightarrow C = \frac{x}{{x - 4}} + \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\ \Leftrightarrow C = \frac{{x + \sqrt x - 2 - \sqrt x - 2}}{{x - 4}}\\ \Leftrightarrow C = \frac{{x - 4}}{{x - 4}} = 1\end{array}\]
Vậy \[C = 1\]
Lời giải
a)Ta có \[\left\{ {\begin{array}{*{20}{c}}{2x + y = 5}\\{x - y = 1\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x = 6\,\,\,\,\,}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 1}\end{array}} \right.\]
Vậy hệ phương trình có nghiệm \[(x;y) = (2;1)\]
b)Đường thẳng \[\left( d \right)\] cắt trục tung tại điểm có tung độ bằng 2, suy ra:
\[x = 0;y = 2\]
Thay \[x = 0;y = 2\] vào \[\left( d \right)\], ta được \[2 = 0 - m \Leftrightarrow m = - 2\]
Vậy \[m = - 2\] thì đường thẳng \[\left( d \right)\] cắt trục tung tại điểm có tung độ bằng 2
Lời giải
Gọi \[x\] là vận tốc của người đi xe đạp đi từ A đến B \[(x > 0)\]
\[x + 3\]là vận tốc của người đi xe đạp đi từ B đến A
Thời gian của Thời gian của người đi xe đạp khi đi từ A đến B là: \[\frac{{36}}{x}\] (giờ)
người đi xe đạp kho đi từ B đến A là: \[\frac{{36}}{{x + 3}}\] (giờ)
Vì thời gian về ít hơn thời gian đi là 36 phút nên ta có phương trình:
\[\frac{{36}}{x} = \frac{{36}}{{x + 3}} + \frac{{36}}{{60}}\]
Giải phương trình, ta được:
\[x = 12\] (thỏa mãn) \[x = - 15\] (loại)
Vậy vận tốc của người đi xe đạp khi đi từ A đến B là: \[12km/h\]
Lời giải
a) Khi \[m = - 2\], phương trình trở thành \[{x^2} - 2x - 3 = 0\]
Ta có: \[a = 1,b = - 2,c = - 3\]
Vì \[a - b + c = 0\] nên phương trình có hai nghiệm phân biệt \[{x_1} = - 1,{x_2} = 3\]
Vậy khi, phương trình (1) có hai nghiệm là: \[{x_1} = - 1,{x_2} = 3\]
b)Ta có:
\[\begin{array}{l}\Delta ' = b{'^2} - ac = {\left[ { - \left( {m + 3} \right)} \right]^2} - 1.(2m + 1)\\\,\,\,\,\,\, = {m^2} + 6m + 9 - 2m - 1\\\,\,\,\,\,\, = {m^2} + 4m + 8\\\,\,\,\,\,\, = {m^2} + 2.2m + {2^2} + 4\\\,\,\,\,\,\, = {\left( {m + 2} \right)^2} + 4 > 0,\forall m \in \mathbb{R}\end{array}\]
Vậy phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị của \[m\]
c)Áp dụng hệ thức Vi-ét, ta có:
\[\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 2(m + 3)}}{1} = 2\left( {m + 3} \right)}\\{{x_1}.{x_2} = \frac{c}{a} = \frac{{2m + 1}}{1} = 2m + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}(3)} \right.\]
Theo đề bài, ta có: \[x_1^2 + x_2^2 - 2{x_1} - 2{x_2} = 10\]
\[ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} - 2\left( {{x_1} + {x_2}} \right) = 10\]
Thay (3) vào phương trình, ta có:
\[\begin{array}{l}{\left[ {2\left( {m + 3} \right)} \right]^2} - 2\left( {2m + 1} \right) - 2.2(m + 3) = 10\\ \Leftrightarrow 4\left( {{m^2} + 6m + 9} \right) - 2\left( {2m + 1} \right) - 4\left( {m + 3} \right) - 10 = 0\\ \Leftrightarrow 4{m^2} + 24m + 36 - 4m - 2 - 4m - 12 - 10 = 0\\ \Leftrightarrow 4{m^2} + 16m + 12 = 0\,\,\left( * \right)\end{array}\]
Ta có: \[4 - 16 + 12 = 0\] nên phương trình (*) có 2 nghiệm là \[{m_1} = - 1;{m_2} = - 3\]
Vậy, với \[m = - 1\] hoặc \[m = - 3\] thì phương trình (1) có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn \[x_1^2 + x_2^2 - 2{x_1} - 2{x_2} = 10\]
Lời giải
a)Xét tứ giác \[AOED\], ta có: \[\widehat {OAD} = 90^\circ \] (tính chất tiếp tuyến )
\[\widehat {OED} = 90^\circ \]( giả thuyết )
\[ \Rightarrow \widehat {OAD} + \widehat {OED} = 90^\circ + 90^\circ = 180^\circ \]
Vậy tứ giác \[AOED\]nội tiếp đường tròn

b)Ta có \[AOFD\] là tứ giác nội tiếp \[ \Rightarrow \widehat {OFD} = 90^\circ \]
Suy ra \[DF\] là tiếp tuyến của đường tròn \[\left( O \right)\]
Xét \[\Delta DFB\] và \[\Delta DCF\], ta có:
\[\widehat D\]:góc chung
\[\widehat {DFB} = \widehat {DCF}\] ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn )
Suy ra: \[\Delta DFB \sim \Delta DCF(g - g) \Rightarrow \frac{{DF}}{{DC}} = \frac{{FB}}{{FC}}\left( 1 \right)\]
Xét \[\Delta DAB\] và \[\Delta DCA\], ta có:
\[\widehat D\]:góc chung
\[\widehat {DAB} = \widehat {ACB}\] ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn )
Suy ra: \[\Delta DAB \sim \Delta DCA(g - g) \Rightarrow \frac{{DA}}{{DC}} = \frac{{AB}}{{AC}}\left( 2 \right)\]
Vì \[DF = DA\] ( tính chất 2 tiếp tuyến cắt nhau ) (3)
Từ (1), (2) và (3) suy ra \[\frac{{FB}}{{FC}} = \frac{{AB}}{{AC}}\]
c)Ta có: \[GC = GB\] (tính chất hai tiếp tuyến cắt nhau)
\[OC = OB\] (bán kính)
Nên \[OG\] là đường trung trực của \[BC\], suy ra \[OG \bot BC\]
Mặt khác: \[OE \bot BC\], nên ba điểm \[O,E,G\] thẳng hàng.
Ta có: \[OA = {\rm{OF; DA = DF}}\]; nên \[{\rm{OD}}\] là đường trung trực của \[{\rm{AF}}\]
Do đó \[{\rm{OD}} \bot {\rm{AF}}\] tại \[H\](5)
Tam giác \[OCG\] vuông tại \[C\] nên \[OE.OG = O{C^2}\]
Tam giác \[OAD\] vuông tại \[H\] nên \[O{A^2} = OH.OD\]
Mà \[OA = OC\] nên \[OE.OG = OH.OD\]. Suy ra \[EHDG\] là tứ giác nội tiếp.
Mà \[\widehat {GED} = 90^\circ \] nên \[\widehat {GHD} = 90^\circ \] (6)
Từ (5) và (6), suy ra \[A,F,G\] thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.