Câu hỏi:

31/12/2025 2 Lưu

Bảng xét dấu dưới đây là của tam thức bậc hai nào?

Bảng xét dấu dưới đây là của tam thức bậc hai nào? (ảnh 1)

A. \(f\left( x \right) =  - {x^2} + 4x + 5\).             
B. \(f\left( x \right) = {x^2} + 4x - 5\).  
C. \(f\left( x \right) = {x^2} + 4x + 5\). 
D. \(f\left( x \right) = {x^2} - 4x - 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Dựa vào bảng xét dấu, ta có tam thức bậc hai có hai nghiệm \(x =  - 1\); \(x = 5\) và \(f\left( x \right) > 0\) với \(x \in \left( { - 1;5} \right)\).

Do đó đây là bảng xét dấu của tam thức \(f\left( x \right) =  - {x^2} + 4x + 5\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt thì \(\Delta ' = {\left( { - 1} \right)^2} - 1 \cdot m > 0 \Leftrightarrow m < 1\). Chọn B.

Câu 3

a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta  > 0\).
Đúng
Sai
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
Đúng
Sai
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\)có 3 nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP