Câu hỏi:

31/12/2025 2 Lưu

Cho đồ thị hàm số bậc hai \(y = f\left( x \right)\) có dạng như hình sau:

Cho đồ thị hàm số bậc hai y = f(x) có dạng như hình sau: a) Trục đối xứng của đồ thị là đường thẳng x =  - 2. (ảnh 1)

a) Trục đối xứng của đồ thị là đường thẳng \(x =  - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Dựa vào đồ thị hàm số, ta có trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Dựa vào đồ thị hàm số, đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

d) Gọi \(\left( P \right):y = a{x^2} + bx + c\).

Dựa vào đồ thị hàm số, ta có đồ thị hàm số đi qua các điểm \(\left( {1;0} \right),\left( {3;0} \right),\left( {2; - 2} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}a + b + c = 0\\9a + 3b + c = 0\\4a + 2b + c =  - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 8\\c = 6\end{array} \right.\).

Vậy \(\left( P \right):y = 2{x^2} - 8x + 6\).

Đáp án: a) Sai;     b) Đúng;    c) Đúng;     d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để \(f\left( x \right) \ge 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - \left( {m + 5} \right) \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {m^2} - 3m - 4 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\ - 1 \le m \le 4\end{array} \right.\).

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1;2;3;4} \right\}\).

Tổng các giá trị nguyên của \(m\) là 9.

Trả lời: 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta  > 0\).
Đúng
Sai
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
Đúng
Sai
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\)có 3 nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP