Câu hỏi:

31/12/2025 2 Lưu

Cho tam thức bậc hai \(f\left( x \right)\) có bảng xét dấu như sau

Cho tam thức bậc hai f(x) có bảng xét dấu như sau  Mệnh đề nào sau đây đúng? (ảnh 1)

Mệnh đề nào sau đây đúng?

A. \(f\left( x \right) \ge 0,\forall x \in \left[ { - 1;3} \right]\).              
B. \(f\left( x \right) < 0,\forall x < 2\). 
C. \(f\left( x \right) \ge 0,\forall x > 3\). 
D. \(f\left( x \right) \ge 0,\forall x < 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Dựa vào bảng xét dấu, ta có \(f\left( x \right) \ge 0,\forall x \in \left[ { - 1;3} \right]\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để \(f\left( x \right) \ge 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - \left( {m + 5} \right) \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {m^2} - 3m - 4 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\ - 1 \le m \le 4\end{array} \right.\).

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1;2;3;4} \right\}\).

Tổng các giá trị nguyên của \(m\) là 9.

Trả lời: 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP