Câu hỏi:

31/12/2025 3 Lưu

Một cửa háng bán bánh ngọt với giá 20000 đồng/cái. Chủ cửa hàng nhận thấy rằng nếu giảm giá mỗi chiếc bánh đi 1000 đồng thì lượng bánh bán ra sẽ tăng thêm 10 cái mỗi ngày. Biết rằng khi chưa giảm giá cửa hàng bán được 100 chiếc bánh mỗi ngày. Doanh thu lớn nhất cửa hàng có thể đạt được là bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

2250

Lời giải

Gọi \(x\)(nghìn đồng, \(0 \le x \le 20\)) là giá giảm mỗi chiếc bánh của cửa hàng.

Khi đó số lượng bánh bán ra mỗi ngày là \(100 + 10x\) (chiếc bánh).

Giá mỗi chiếc bánh là \(20 - x\) (nghìn đồng).

Doanh thu của cửa hàng là \(y = \left( {100 + 10x} \right)\left( {20 - x} \right)\)\( =  - 10{x^2} + 100x + 2000\).

Bài toán trở thành tìm giá trị lớn nhất của hàm số \(y =  - 10{x^2} + 100x + 2000\), \(0 \le x \le 20\).

Tọa độ đỉnh của parabol là \(I\left( {5;2250} \right)\).

Vì \(a =  - 10 < 0\) và \(5 \in \left[ {0;20} \right]\) nên giá trị lớn nhất của hàm số là 2250 khi \(x = 5\).

Vậy doanh thu lớn nhất cửa hàng có thể đạt được là 2250 nghìn đồng.

Trả lời: 2250.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để \(f\left( x \right) \ge 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - \left( {m + 5} \right) \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {m^2} - 3m - 4 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\ - 1 \le m \le 4\end{array} \right.\).

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1;2;3;4} \right\}\).

Tổng các giá trị nguyên của \(m\) là 9.

Trả lời: 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta  > 0\).
Đúng
Sai
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
Đúng
Sai
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\)có 3 nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP