Câu hỏi:

31/12/2025 3 Lưu

Một tấm sắt hình chữ nhật có chu vi là 48 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 2 cm như hình vẽ.

Một tấm sắt hình chữ nhật có chu vi là 48 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 2 cm như hình vẽ.  Tìm chiều dài của tấm sắt sao cho diện tích phần còn lại của tấm sắt ít nhất bằng 92 cm2. (ảnh 1)

Tìm chiều dài của tấm sắt sao cho diện tích phần còn lại của tấm sắt ít nhất bằng 92 cm2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Nửa chu vi tấm sắt là \(48:2 = 24\) (cm).

Gọi chiều dài của tấm sắt là \(x\left( {{\rm{cm}}} \right)\).

Chiều rộng của tấm sắt là \(24 - x\) (cm).

Vì chiều dài lớn hơn chiều rộng nên ta có \(\left\{ \begin{array}{l}x > 24 - x\\x < 24\end{array} \right. \Leftrightarrow 12 < x < 24\) (1).

Diện tích phần còn lại của tấm sắt là \(x\left( {24 - x} \right) - 4 \cdot 4\) (cm2).

Để diện tích phần còn lại của tấm sắt ít nhất bằng 92 cm2 thì \(x\left( {24 - x} \right) - 4 \cdot 4 \ge 92\)\( \Leftrightarrow  - {x^2} + 24x - 108 \ge 0\)\( \Leftrightarrow 6 \le x \le 18\) (2).

Từ (1) và (2), suy ra \(12 < x \le 18\).

Vậy tấm sắt có chiều dài thuộc nửa khoảng \(\left( {12;18} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt thì \(\Delta ' = {\left( { - 1} \right)^2} - 1 \cdot m > 0 \Leftrightarrow m < 1\). Chọn B.

Câu 3

a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta  > 0\).
Đúng
Sai
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
Đúng
Sai
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\)có 3 nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP