Câu hỏi:

31/12/2025 3 Lưu

Trong một buổi thử nghiệm vũ khí người ta bắn một quả tên lửa lên cao theo quỹ đạo xác định trước có phương trình là \(y =  - \frac{{9,8}}{{300}}{x^2} + x\), trong đó \(x\) là thời gian kể từ thời điểm bắn tên lửa (giây) và \(y\) là độ cao của tên lửa so với mặt đất (mét).

a) Tính độ cao của tên lửa tại thời điểm \(x = 10\) giây.

b) Tính độ cao lớn nhất của quả tên lửa trong quá trình bay.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) \(y\left( {10} \right) =  - \frac{{9,8}}{{300}} \cdot {10^2} + 10 = \frac{{101}}{{15}}\) (m).

b) Tọa độ đỉnh của quỹ đạo là \(I\left( {\frac{{750}}{{49}};\frac{{375}}{{49}}} \right)\).

Vì \(a =  - \frac{{9,8}}{{300}} < 0\) nên độ cao lớn nhất của quả tên lửa trong quá trình bay là \(\frac{{375}}{{49}}\) m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt thì \(\Delta ' = {\left( { - 1} \right)^2} - 1 \cdot m > 0 \Leftrightarrow m < 1\). Chọn B.

Câu 3

a) Tam thức bậc hai \(f\left( x \right)\) có \(\Delta  > 0\).
Đúng
Sai
b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).
Đúng
Sai
c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).
Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\)có 3 nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP