Câu hỏi:

31/12/2025 2 Lưu

Tính góc giữa hai đường thẳng \(\Delta :3x + y - 1 = 0\) và \(\Delta ':4x - 2y - 4 = 0\).

A. \(45^\circ \).  
B. \(90^\circ \).   
C. \(60^\circ \).    
D. \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đường thẳng \(\Delta \) và \(\Delta '\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right);\overrightarrow {{n_2}}  = \left( {4; - 2} \right)\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \) và \[\Delta '\].

Ta có \(\cos \varphi  = \frac{{\left| {\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {3 \cdot 4 + 1 \cdot \left( { - 2} \right)} \right|}}{{\sqrt {{3^2} + {1^2}}  \cdot \sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }}\)\( = \frac{{10}}{{10\sqrt 2 }} \Rightarrow \varphi  = 45^\circ \). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong mặt phẳng Oxy, cho hình thang ABCD có đáy lớn CD = 3AB, C(- 3; - 3), trung điểm của AD là M(3;1);SBCD = 18,AB = căn bậc hai của 10 và đỉnh D có hoành độ nguyên dương. Giả sử điểm B(xB);{yB). Tính 3xB - yB. (ảnh 1)

Gọi \[\overrightarrow n  = \left( {a;b} \right)\] với \({a^2} + {b^2} \ne 0\) là vectơ pháp tuyến của đường thẳng \(CD\).

Khi đó đường thẳng \(CD\) đi qua điểm \(C\left( { - 3; - 3} \right)\) và có vectơ pháp tuyến \[\overrightarrow n  = \left( {a;b} \right)\] có phương trình là

\(a\left( {x + 3} \right) + b\left( {y + 3} \right) = 0 \Rightarrow ax + by + 3a + 3b = 0\).

Vì \(CD = 3AB\) nên \(CD = 3\sqrt {10} \). Khi đó \(d\left( {A,CD} \right) = \frac{{2{S_{BCD}}}}{{CD}} = \frac{{36}}{{3\sqrt {10} }} = \frac{{12}}{{\sqrt {10} }}\).

Suy ra \(d\left( {M,CD} \right) = \frac{1}{2}d\left( {A,CD} \right) = \frac{6}{{\sqrt {10} }}\)\( \Leftrightarrow \frac{{\left| {3a + b + 3a + 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{6}{{\sqrt {10} }}\)\( \Leftrightarrow \frac{{\left| {3a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{3}{{\sqrt {10} }}\)

\( \Leftrightarrow 10{\left( {3a + 2b} \right)^2} = 9\left( {{a^2} + {b^2}} \right)\)\( \Leftrightarrow 81{a^2} + 120ab + 31{b^2} = 0\)\( \Leftrightarrow a =  - \frac{1}{3}b\) hoặc \(a =  - \frac{{31}}{{27}}b\).

TH1: \(a =  - \frac{1}{3}b\).

Chọn \(b =  - 3\) thì \(a = 1\). Khi đó phương trình đường thẳng \(CD:x - 3y - 6 = 0 \Rightarrow D\left( {3d + 6;d} \right)\).

Ta có \(C{D^2} = 90\)\( \Leftrightarrow {\left( {3d + 9} \right)^2} + {\left( {d + 3} \right)^2} = 90 \Leftrightarrow {\left( {d + 3} \right)^2} = 9\)\( \Leftrightarrow d = 0\) hoặc \(d =  - 6\).

Suy ra \(D\left( {6;0} \right)\) (thỏa mãn) hay \(D\left( { - 12; - 6} \right)\) (loại).

Vậy \(D\left( {6;0} \right) \Rightarrow A\left( {0;2} \right)\).

Ta có \(\overrightarrow {AB}  = \frac{1}{3}\overrightarrow {DC}  = \left( { - 3; - 1} \right)\)\( \Rightarrow B\left( { - 3;1} \right)\).

TH2: \(a =  - \frac{{31}}{{27}}b\).

Chọn \(b =  - 27 \Rightarrow a = 31\). Khi đó \(CD:31x - 27y + 12 = 0\)\( \Rightarrow D\left( {d;\frac{{31d + 12}}{{27}}} \right)\).

Suy ra \(C{D^2} = {\left( {d + 3} \right)^2} + {\left( {\frac{{31d + 93}}{{27}}} \right)^2} = 90\)\( \Rightarrow {\left( {d + 3} \right)^2} = \frac{{6561}}{{169}}\) (loại).

Vậy \(B\left( { - 3;1} \right)\)\( \Rightarrow 3a - b =  - 10\).

Trả lời: −10.

Câu 2

A. \(2x + 3y + 8 = 0\).  
B. \(2x + 3y - 8 = 0\). 
C. \(3x - 2y - 1 = 0\).  
D. \(3x - 2y + 1 = 0\).

Lời giải

Lời giải

Ta có \(\overrightarrow {AB}  = \left( { - 2; - 3} \right)\). Có \(\overrightarrow n  = \left( {3; - 2} \right)\) vuông góc với \(\overrightarrow {AB}  = \left( { - 2; - 3} \right)\) nên \(\overrightarrow n  = \left( {3; - 2} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Đường thẳng \(AB\) đi qua điểm \(A\left( {1;2} \right)\) và nhận \(\overrightarrow n  = \left( {3; - 2} \right)\) làm vectơ pháp tuyến có phương trình là

\(3\left( {x - 1} \right) - 2\left( {y - 2} \right) = 0\)\( \Leftrightarrow 3x - 2y + 1 = 0\). Chọn D.

Câu 5

A. \({x^2} + {y^2} - 6x + 4y + 13 = 0\).  
B. \({x^2} + {y^2} + 2x - 4y + 9 = 0\). 
C. \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\).  
D. \(2{x^2} + {y^2} + 2x - 3y + 9 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Trùng nhau.                    
B. Cắt nhau nhưng không vuông góc.                             
C. Vuông góc với nhau.
D. Song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow u  = \left( {4;5} \right)\). 
B. \(\overrightarrow u  = \left( {5;4} \right)\).      
C. \(\overrightarrow u  = \left( {2; - 3} \right)\). 
D. \(\overrightarrow u  = \left( { - 4;5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP