Câu hỏi:

31/12/2025 32 Lưu

Tập nghiệm của phương trình \(\sqrt {2{x^2} + 7x + 1}  = \sqrt {3{x^2} + 4x - 9} \) là

A. \(\left\{ { - 2;5} \right\}\). 
B. \(\emptyset \).        
C. \(\left[ {5; + \infty } \right)\).       
D. \(\left\{ 5 \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Bình phương hai vế của phương trình ta được

\(2{x^2} + 7x + 1 = 3{x^2} + 4x - 9\)\( \Leftrightarrow {x^2} - 3x - 10 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 5\end{array} \right.\).

Thay lần lượt \(x =  - 2;x = 5\) vào bất phương trình \(2{x^2} + 7x + 1 \ge 0\), ta thấy \(x = 5\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 5 \right\}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đồng biến trên khoảng \(\left( { - 3;1} \right)\) và \(\left( {1;4} \right)\).        

B. Đồ thị cắt trục hoành tại 3 điểm phân biệt.           

C. Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) và \(\left( {1;3} \right)\).

D. Hàm số nghịch biến trên khoảng \(\left( { - 2;1} \right)\).

Lời giải

Lời giải

Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) và \(\left( {1;3} \right)\). Chọn C.

Lời giải

Lời giải

Vì \(\left( P \right)\) có hoành độ đỉnh bằng \( - 3\) và đi qua điểm \(M\left( { - 2;1} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - \frac{{ - 4}}{{2a}} =  - 3\\4a + 8 + c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 4 = 6a\\4a + c =  - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{2}{3}\\c =  - \frac{{13}}{3}\end{array} \right.\)\( \Rightarrow S = 2a - c = 3\). Chọn A.

Câu 3

a) \(f\left( {\frac{3}{2}} \right) = f\left( {\sqrt 5 } \right)\).

Đúng
Sai

b) Điểm \(A\left( {0;0} \right)\) thuộc đồ thị hàm số.

Đúng
Sai

c) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).

Đúng
Sai
d) Tập giá trị của hàm số là \(\left[ {4; + \infty } \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\).  
B. \(S = \left( { - 2;3} \right)\).
. \(S = \left[ { - 2;3} \right]\). 
D. \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(I\left( { - 1;6} \right)\).  
B. \(I\left( {1;0} \right)\). 
C. \(I\left( {2; - 10} \right)\).      
D. \(I\left( { - 1;8} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP