Câu hỏi:

16/01/2026 35 Lưu

Cho tập \(A\) có \(n\) phần tử \(\left( {n \in \mathbb{N},n \ge 2} \right)\), \(k\) là số nguyên thỏa mãn \(1 \le k \le n\). Số các chỉnh hợp chập \(k\) của \(n\) phần tử trên là

A. \(n.k\);                                                       

B. \(n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - k + 1} \right)\);                   

C.\(\frac{n}{k}\);                                             
D.\(\frac{k}{n}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Kí hiệu số các chỉnh hợp chập \(k\) của \(n\) phần tử \(\left( {1 \le k \le n} \right)\) là \(A_n^k\).

Ta có: \(A_n^k = n\left( {n - 1} \right)...\left( {n - k + 1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 252;                       
B. 352;                          
C. 452;                       
D. 425.

Lời giải

Đáp án đúng là: B

Áp dụng công thức khai triển của \({\left( {a + b} \right)^5}\) lần lượt cho \(a = \sqrt 5 \) và \(b = 1\), rồi cho \(a = \sqrt 5 \) và \(b =  - 1\), ta có

\({\left( {\sqrt 5  + 1} \right)^5} - {\left( {\sqrt 5  - 1} \right)^5}\)

\( = \left( {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5\sqrt 5  + 1} \right)\)

\( - \left( {{{\left( {\sqrt 5 } \right)}^5} - 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} - 10{{\left( {\sqrt 5 } \right)}^2} + 5\sqrt 5  - 1} \right)\)

\( = 10.{\left( {\sqrt 5 } \right)^4} + 20.{\left( {\sqrt 5 } \right)^2} + 2\)

\( = 10\,\,.\,25 + 20\,\,.\,\,5 + 2 = 352\)

Lời giải

Số cách chọn 4 học sinh bất kì từ 12 học sinh là \(C_{12}^4 = 495\) cách.

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:

\( * \) TH1: Lớp \(A\) có 2 học sinh, các lớp \(B,C\) mỗi lớp có 1 học sinh:

Chọn 2 học sinh trong 5 học sinh lớp \(A\) có \(C_5^2\) cách.

Chọn 1 học sinh trong 4 học sinh lớp \(B\) có \(C_4^1\) cách.

Chọn 1 học sinh trong 3 học sinh lớp \(C\) có \(C_3^1\) cách.

Suy ra số cách chọn là \(C_5^2.C_4^1.C_3^1 = 120\) cách.

\( * \) TH2: Lớp \(B\) có 2 học sinh, các lớp \(A,C\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^2.C_3^1 = 90\) cách.

\( * \) TH3: Lớp \(C\) có 2 học sinh, các lớp \(A,B\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^1.C_3^2 = 60\) cách.

Vậy số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là \(120 + 90 + 60 = 270\) cách.

Số cách chọn ra 4 học sinh thuộc không quá 2 trong 3 lớp trên là \(495 - 270 = 225\) cách.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {\frac{3}{2};\,\,\frac{3}{2}} \right)\);                                  
B. \(\left( {1;\,\,1} \right)\);                     
C. \(\left( {2;\,\,2} \right)\);                              
D. \(\left( { - \frac{3}{2};\,\, - \frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 3;2} \right)\);                               
B. \(\left( { - 3; - 2} \right)\);          
C. \(\left( {3;2} \right)\);            
D. \(\left( {3; - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP